A B C D E F G H I J K L M N O P Q R S T U V W X Z

Tektonik

Die Tektonik ist ein Teilgebiet der Geologie und befasst sich mit Aufbau und Dynamik der Erdkruste. Von besonderem Interesse sind dabei die Bewegungsmuster der Erdkrustenplatten entlang der tektonischen Plattengrenzen. Sie werden unter dem Begriff Plattentektonik zusammengefasst. Die Platten bewegen sich heute noch mit einer Geschwindigkeit im Zentimeterbereich.

Die Plattengrenzen sind die Orte an denen die meisten Erdbeben stattfinden und wo sich eine Vielzahl Vulkane bildeten und Gebirge entstehen. Darüber hinaus gibt es auch in den Erdkrustenplatten zahlreiche Störungszonen, an denen tektonische Prozesse stattfinden. Diese können sich selbst in kleinen Gesteinsproben wiederspiegeln, anhand derer sich die Geschichte eines Gesteins ablesen lässt.

Entlang von Störungen sind unterschiedliche Bewegungen möglich. Gesteinsschichten können sich horizontal, oder vertikal verschieben. Dabei kann der Versatz mehrere Tausend Meter betragen. Gesteinspakete geraten dabei oft in größeren Tiefen, wo sich die Druck- und Temperaturbedingungen ändern. Diese Änderungen lösen oft chemische Reaktionen im Gestein aus und es verwandelt sich. Solche Gesteine nennt man metamorphe Gesteine.

Die Bewegungen der Gesteine entlang von Störungen lösen Druck-, oder Spannungen aus und es kann zu Sprödbruch, oder zur plastischen Verformung des Gesteins kommen. Während der Bruch eines Gesteins ein Erdbeben auslösen kann, verursacht die plastische Verformung Gesteinsfalten. Verbogene Gesteinsschichten entlang von Störungszone können aber auch plötzlich zurückschnellen und ebenfalls Erdbeben auslösen.

Der Begriff Tektonik wurde vom griechischen tektonikós abgeleitet, was soviel wie „die Baukunst betreffend“ heißt. In diesem Fall ist der Baukünstler die Erddynamik. Sie wird auch als Voraussetzung für die Existenz von Leben auf unserem Planeten angesehen. Motor hinter der Dynamik der Erde sind die Temperaturunterschiede im Erdinneren. Sie lassen Konvektionsströmungen entstehen, die sich wiederum direkt auf der Erdplatten auswirken und somit die Plattentektonik bedingen.

Tektonische Platte

Die Erdkruste besteht nicht aus einem einzigen Stück Krustengestein, sondern ist in acht große und zahlreiche kleinere tektonische Platten aufgeteilt. Auf diesen Platten liegen die Kontinente und Ozeane. Man unterscheidet zwischen Kontinentalplatten und ozeanischen Platten. Diese Platten bewegen sich relativ zueinander und verschieben sich jedes Jahr um mehrere Zentimeter. An den Rändern der Platten stoßen die tektonischen Krustenplatten aufeinander, was zur Entstehung von Erdbeben führen kann. Die Plattengrenzen können unterschiedliche Typen aufweisen: Die Platten können voneinander wegrücken, seitlich aneinander vorbeigleiten oder sich vertikal verschieben, wobei die schwerere Platte oft unter die leichtere Platte abtaucht bzw. subduziert wird. Bei diesem Prozess taucht die subduzierte Platte in den Erdmantel ab und schmilzt, was zur Bildung von Magma führt. Auch Gebirge können durch den Zusammenstoß von Erdkrustenplatten entstehen und sich aufschieben.

Lage und Größe der Platten kann im Laufe der Zeit variieren und sich aufgrund tektonischen Verschiebungen verändern. Hier sind die 8 größten tektonischen Platten aufgelistet:

  1. Pazifische Platte: Die Pazifische Platte ist die größte tektonische Platte und umfasst den gesamten Pazifischen Ozean sowie angrenzende Landmassen wie Teile von Nordamerika, Südamerika, Asien und Ozeanien.
  2. Nordamerikanische Platte: Diese Platte umfasst den Großteil Nordamerikas, einschließlich Nordamerika, Grönland und Teilen des Nordatlantiks.
  3. Eurasische Platte: Die Eurasische Platte erstreckt sich über Europa und Asien und umfasst Gebiete wie Europa, Russland und große Teile Asiens.
  4. Südamerikanische Platte: Diese Platte umfasst den Großteil Südamerikas.
  5. Afrikanische Platte: Die Afrikanische Platte deckt den größten Teil des afrikanischen Kontinents ab.
  6. Antarktische Platte: Diese Platte liegt unter dem Antarktischen Kontinent.
  7. Australische Platte: Die Australische Platte umfasst Australien, Neuseeland und angrenzende Meeresgebiete.
  8. Indische Platte: Die Indische Platte umfasst den indischen Subkontinent sowie Teile des Indischen Ozeans.

Es gibt auch kleinere tektonische Kontinentalplatten, die sich in der Nähe von Plattenrändern befinden, wie die Karibische Platte, die Philippinische Platte, die Arabische Platte und andere. Besonders entlang des Pazifik-Randes gibt es weitere ozeanische Platten wie die Nazca- und die Cocosplatte. Der Atlantik liegt nicht auf einer eigenständigen Ozeanplatte. Sein Becken wird durch ozeanische Kruste gebildet, die entlang des Mittelatlantischen Rückens durch magmatische und vulkanische Prozesse neu entsteht und die mit den gegenüberliegenden Kontinenten Europa-Nordamerika und Afrika-Südamerika verbunden ist.

Im Verlauf der Erdgeschichte gab es mehrere Perioden, während denen alle oder fast alle Kontinente zu einem Großkontinent vereinigt waren und die Landmassen der Erde miteinander verbunden waren. Der bekannteste dieser Superkontinente war Pangaea.

Tephra

Als Tephra werden vulkanische Lockerstoffe bezeichnet, die als fragmentierte Lava explosiv gefördert werden. Wenn sich die Tephra am Boden ablagert und verfestigt, entstehen pyroklastische Sedimente.

Tephra unterscheidet sich in ihrer Korngröße und wird entsprechend in Asche, Lapilli und Bomben bzw. Blöcke eingeteilt. Die Vulkanasche besteht quasi aus Sandkörnern mit einer Korngröße kleiner als 2 mm. Die Lapilli sind in etwa so groß wie Kieselsteine und haben einen Durchmesser zwischen 2 mm und 64 mm. Alles, was größer als 64 mm ist, bezeichnet der Vulkanologe als Blöcke oder Bomben. Während die Lava der Blöcke bei der Eruption bereits erstarrt war, wurden die Bomben in einem plastischen Zustand ausgeworfen. Dadurch nahmen sie eine spindelartige bis runde Form an. Bei der Abkühlung schrumpfen die Bomben, wodurch sich an der Oberfläche Risse bilden. Aufgrund der so entstandenen Oberflächenstruktur spricht man von Brotkrustenbomben. Lapilli, Blöcke und Bomben werden auch als Pyroklasten bezeichnet. Unregelmäßig geformte Pyroklasten werden auch als Schlacke bezeichnet. Dies geschieht in Anlehnung an die Schlacke aus Hochöfen. Besonders auf Eruptionsspalten bilden sich Schlackenkegel. Die Schlacke wird häufig von Lavafontänen erzeugt.

Die Fragmentation der Lava erfolgt durch explosive Eruptionen. Die Lava steht im Förderschlot und wird durch den hohen Gasdruck eruptiert. Die dabei entstehenden Explosionen zerfetzen die Lava in unterschiedlich große Partikel. Die Vulkanasche kann bis in die Stratosphäre aufsteigen und wird mit dem Wind über große Entfernungen verfrachtet. Je feiner die Partikel sind, desto weiter reisen sie mit dem Wind, bis sie schließlich zu Boden fallen. Größere Partikel lagern sich in Kraternähe ab. Bei besonders starken Explosionen werden große Bomben und Blöcke mehrere Kilometer weit ausgeschleudert. Helme bieten gegen diese großen Pyroklasten kaum Schutz. Selbst walnussgroße Objekte können zu tödlichen Geschossen werden.

Die Menge der geförderten Tephra ist ein wichtiges Kriterium zur Klassifizierung der Eruptionsstärke nach dem Vulkanexplosivitätsindex (VEI). Wird keine Tephra gefördert, hat die Eruption einen VEI 0. Werden mehr als 1000 Kubikkilometer Tephra gefördert, wird die Eruption mit einem VEI 8 eingestuft.

Thermische Anomalie

Eine Thermische Anomalie bezeichnet eine ungewöhnliche Temperatur-Erscheinung. Im Zusammenhang mit dem Vulkanismus ist dies normalerweise eine Temperaturerhöhung. Sie kann durch heiße Gase hervorgerufen werden, oder aber auch direkt durch Lava (heiße Tephra, Lavastrom) verursacht werden. Meistens spricht man von einer Thermischen Anomalie, wenn die Quelle der Wärmeentwicklung unklar ist, etwa, wenn sie nur mittels Fernerkundung detektiert wurde, ohne dass es eine direkte Bestätigung der Vorgänge vor Ort gibt.

MODIS und MIROVA: Satelliten-gestützte Infrarot-Aufnahmen ermitteln Thermische Anomalien

Thermische Anomalien werden normalerweise von Satelliten aus detektiert. Mit speziellen Kameras werden Aufnahmen gemacht, die das Licht im Spektrum der nicht sichtbaren Wellenlängen untersuchen. Aufnahmen im Infrarotbereich können so bereits relativ schwache Wärmeanomalien mit Leistungen von ca. 1 Megawatt (MW) feststellen. MIROVA (Middle InfraRed Observation of Volcanic Activity) ist ein Projekt der Universität von Florenz. Die Wissenschaftler benutzen Daten von MODIS (Moderate Resolution Imaging Spectroradiometer) und stellen sie in nahezu Echtzeit zur Verfügung. Die Bilder werden innerhalb von 1-4 Stunden nach Überflug der Satelliten ausgewertet. Die Daten werden in Kategorien sortiert, anhand derer man schon grob die Aktivität des Vulkans festlegen kann.

Die Infrarot-Spektrometer befinden sich an Bord der Terra- und Aqua-Satelliten, die die gesamte Erdoberfläche innerhalb von 1-2 Tagen mindestens einmal abtasten. Die Umlaufbahnen um die Erde sind so getaktet, dass Terra morgens von Nord nach Süd über den Äquator fliegt, während Aqua den Äquator nachmittags von Süd nach Nord umkreist. Die Instrumente haben eine hohe radiometrische Empfindlichkeit in 12 Bit und tasten 36 Spektralbändern im Wellenlängenbereich von 0,4 nm bis 14,4 nm ab.

Vulkanische Strahlungsleistung

Die vulkanische Strahlungsleistung (Volcanic Radiative Power, VRP) ist eine Messung der Wärme, die von der vulkanischen Aktivität zum Zeitpunkt einer Satellitenaufnahme abgestrahlt wird.
Die VRP wird in Watt (W) berechnet und stellt eine kombinierte Messung der Fläche des vulkanischen Emitters und seiner effektiven Strahlungstemperatur dar. MIROVA berechnet die vulkanische Strahlungsleistung mit Hilfe der „MIR-Methode“ (nach Wooster et al., 2003), einem Ansatz, der ursprünglich eingeführt wurde, um die von Bränden (Waldbränden) abgestrahlte Wärme anhand von Satellitendaten abzuschätzen.

MIROVA stellt die vulkanische Strahlungsleistung in einer 5-stufigen logarithmischen Skala dar, die zudem farbig kodiert ist. Sie reicht von 1 MW bis hin zu 10 GW und kann grob verschiedener vulkanischer Tätigkeit zugeordnet werden. Zu berücksichtigen ist, dass Bewölkung die Infrarotstrahlung abschwächen kann und dass die Ergebnisse dadurch verfälscht werden können.

1MW 10MW 100 MW 1 GW 10 GW
Fumarolische Aktivität Strombolianisch, Lavadom Lavastrom, Lavasee Großer Lavastrom Multiple Lavaströme mit Lavafontänen

Die Aktivitätszuordnung in der Tabelle entspringt meinen eigenen Erfahrungswerten und dienen als grobe Einordung. Insbesondere können große Mengen heißer Tephra und Lavafontänen die Wärmestrahlung ebenfalls beeinflussen. So erzeugen Paroxysmen am Ätna schnell mehr als 10 GW Leistung, wenn eine Messung direkt in die Hauptphase der Eruption fällt.

(Quelle MIROVA)

Thermophile Mikroorganismen

Thermophilie Mikroorganismen kommen besonders häufig in vulkanischen Thermalquellen vor. Diese Mikroorganismen bevorzugen eine Umgebung mit warmen Temperaturen zwischen 45 und 80 Grad Celsius. Kommen Lebewesen in noch heißeren Environments vor, spricht man von Hyperthermophilen.


Typische Thermophile sind Archaen (Archebakterien, Urbakterien), weniger häufig kommen auch Bakterien ( Bacillus, Clostridium, oder Cyanobakterien) vor. Archaen können Temperaturen von mehr als 70 Grad vertragen und finden sich häufig in Thermalquellen und Geysirbecken. Sie können das Wasser färben und mattenartige Kolonien bilden.

Hyperthermophile Archaen vertragen sogar Wassertemperaturen von über 100 Grad Celsius und leben an Black Smokern in der Tiefsee. Aufgrund des hydrostatischen Drucks kocht das Wasser an den Hydrothermalen Tiefseequellen nicht, daher kann das Wasser über 100 Grad heiß werden. Viele dieser Organismen sind anaerob, d.h. sie brauchen keinen Sauerstoff. Ihr Stoffwechsel beruht auf Schwefel, oder der Reduzierung von Eisen-Isotopen. Bei niedrigen Temperaturen können sie zwar oft Überleben, sind aber nicht in der Lage sich zu vermehren.

Seltener kommen auch höhere Organismen in heißen Quellen vor. Besonders im Randbereich von Thermalquellen kommen Algenteppiche vor. Es wurden aber auch schon thermophile Pilze, Würmer und Krebse entdeckt.

Entwicklung des Lebens in Heißen Quellen

Einer wissenschaftlichen Theorie nach entwickelten sich erste irdische Lebensformen in heißen Quellen vulkanischen Ursprungs. Diese Theorie fußt auf einer Entdeckung, die auf das Jahr 2014 zurück geht und im australischen Nordwesten gemacht wurde. Im 3,48 Milliarden alten Sedimenten der Dresser-Formation fanden Forscher Geyserit-Gestein, das sich -wie der Name bereits vermuten lässt- in Geysirbecken bildete. In Hohlräumen des Geyserits wurde eine Substanz gefunden, die aus einem klebrigen Film gebildet wurde, den Bakterien absondern. Die Forschergruppe um Djocik und Van Kranendonk geht davon aus, dass sich im Geysirbecken erste Einzeller gebildet hatten.

Eine andere Theorie sieht die Geburtsstätte irdischen Lebens in der Nähe der hydrothermalen Tiefseequellen. Auf jeden Fall wird es sich bei den ersten Lebewesen der Erde um anaerobe Organismen gehandelt haben, da sich Sauerstoff erst durch die Ausscheidungen der Blaualgen-Bakterien bildete. Dieser wurde bis vor 2,3 Milliarden Jahren aber durch Reaktion mit im Wasser gelöstem Eisen und Schwefel sofort verbraucht. Erst als dieser Prozess zum Erliegen kam, konnte sich eine sauerstoffhaltige Atmosphäre bilden.

Tornillo

Unter einem Tronillo versteht der Seismologe ein schraubenförmiges Erdbebensignal auf einem Seismogramm. Die Signale sind monofrequent und ihre Amplitude klingt mit zunehmender Laufzeit ab. Daher haben sie die Gestalt einer Schraube (auf Spanisch tornillo). Die Frequenz von Tornillos liegt typischerweise im Infraschallbereich.

Tornillos am Vulkan Galeras

Von Tornillos wurde erstmals im Zusammenhang mit dem Ausbruch des Vulkans Galeras (Kolumbien) im Jahr 1993 berichtet. Der Vulkan brach relativ überraschend aus, gerade als sich mehrere Vulkanologen im Krater befanden. 6 Forscher und 3 Touristen starben durch die unerwartete Eruption. Mehrere Personen wurden verletzt. Die Forscher waren im Rahmen einer Konferenz zusammen gekommen und stellten sich natürlich die Frage, ob es nicht doch Anzeichen einer bevorstehenden Eruption gab. Bei der Durchsicht der Seismogramme stieß man auf die Tornillos. Einige Jahre lang galten sie als eindeutiger Hinweis einer bevorstehenden Eruption. Heute weiß man allerdings, das Tornillos vor einen bevorstehenden Vulkanausbruch warnen können, allerdings muss es nicht zwangsläufig zu einer Eruption kommen, wenn zuvor Tornillos registriert wurden. So ist es wie mit vielen anderen Messdaten auch, die alleine für sich genommen kein zuverlässiges Instrument darstellen, um eine Eruption verlässlich vorherzusagen.

Tornillos und der Klang des Vulkans

Die Tornillos repräsentieren ein seismisches Signal im Infraschallbereich. Mittels Synthesizer lassen sich die unhörbaren Geräusche in für uns hörbare Töne umwandeln. So sprechen Vulkanologen gerne von „Orgeltönen“. Die Tornillos entstehen, wenn Gas durch den Förderschlot eines Vulkans gedrückt wird. Je nach Dimension des Förderschlotes und dem Gasdruck, entstehen unterschiedliche Infraschall-Töne. Ganz nach dem Prinzip einer Orgelpfeife.  Die Tornillos unterscheiden sich in Frequenz und Oszillation. So konnten Forscher am Cotopaxi die Tornillos dazu benutzten, den Förderschlot genauer zu untersuchen und auf die Höhe des Magmas im Schlot schließen. Nach der letzten eruptiven Phase im Jahr 2015 war der Schlot zwischen 270 und 320 Meter tief und 125 Meter breit. Bereits in einer früheren Arbeit gelang es Vulkanologen die Tremor-Töne eines Vulkans hörbar zu machen. (Quelle: Johnson et al./ American Geophysical Union)

Transformstörung

Eine Transformstörung (engl.: strike slip fault) trennt 2 tektonische Kontinentalplatten voneinander. Entlang der Störungszone verschieben sich die Platten seitwärts. Sie ist das größere Pendant zu einer Blattverschiebung (Transversalverschiebung), die eine lokale Störung in einer Platte darstellt. Das Bewegungsprinzip ist bei Transformstörung und Blattverschiebung identisch: Die Erdkruste verschiebt sich entlang einer senkrecht verlaufenden Fläche horizontal.

Man unterscheidet in sinistrale (linkshändige) und dextrale (rechtshändige) Bewegungsrichtung. Zur Ermittlung der Bewegungsrichtung wird der Bewegungssinn der Platte herangezogen, auf die der Betrachter nicht steht.

Erdbeben an Transformstörungen

Die Bewegungen entlang von Störungszonen laufen in den seltensten Fällen gleichmäßig ab. Obwohl die Kräfte auf die Platten konstant wirken, verhindert die Reibung entlang der Gesteinsflächen gleichförmige Bewegungen. Stattdessen verhaken die Platten und es bauen sich Spannungen auf, die solange größer werden, bis sich die verharkten Platten mit einem Ruck lösen. Diesen ruck nehmen wir als Erdbeben wahr.

Bekannte Transformstörungen

Zwei große Transformstörungen spielen gerade unter dem Aspekt der Erdbeben eine große Rolle im Weltgeschehen: Die San Andreas fault und die Nordanatolische Verwerfung. Beide sind für eine Reihe katastrophaler Erdbeben verantwortlich und an Beiden werden künftig weitere zerstörerische Starkbeben erwartet.

Die San Andreas fault liegt im US-Bundesstaat Kalifornien und trennt die Pazifische Platte vom Nordamerikanischen Kontinent. Bei ihr handelt es sich um eine dextrale Transformstörung die fast 1300 km lang ist. Das wohl bekannteste Erdbeben an dieser Störungszone ereignete sich im Jahr 1906: Ein Erdstoß der Magnitude 7,6 zerstörte San Francisco. Seitdem wartet man auf ein neues „big one“.

Die Nordanatolische Verwerfung liegt in der Türkei und trennt die Anatolische Platte von Eurasien. Auch sie ist rechtshändig und gut 1200 km lang. Sie verläuft in etwa parallel zur Küste des Schwarzen Meeres, passiert das Marmarameer und mündet in die Ägäis. Auf der Störungszone liegen Metropolen Izmit und Istanbul. eines der jüngsten Starkbeben ereignete sich 1999 und hatte eine Magnitude von 7,6. Es forderte 18.000 Menschenleben und legte die Stadt Gölcük in Trümmern. Es wird befürchtet, dass Istanbul ein ähnliches Schicksal droht.

Eine sehr schöne Blattverschiebung findet sich in China. Entlang der Piqiang fault wird ein ganzer Höhenzug sinistral versetzt. Die devonischen- und silurischen Sedimentgesteine sind um gut 2 km verschoben worden.

Diese wunderbare Störungszone liegt südlich der Tien Shan Berge, im Nordwesten der Provinz Xinjiang. Dort sind Gesteinsschichten aus mehreren Erdzeitaltern aufgeschlossen.

Tremor

Als Tremor bezeichnet man eine besondere Art vulkanisch bedingter Erdbeben. Sie sind von geringer Magnitude und äußern sich als ein beständiges Zittern des Erdbodens. Tremor wird direkt von den Bewegungen magmatischer Fluide im Untergrund ausgelöst. In der Vulkanologie dient Tremor als Indikator für Magmenaufstieg. Da praktisch jeder Vulkan vor einer größeren explosiven Eruption vulkanischen Tremor erzeugt, gilt er als einer der wichtigsten Frühwarn-Parameter eines unmittelbar bevorstehenden Ausbruchs. Je näher der Ausbruch rückt, desto stärker wird der Tremor. Aber nicht jeder Vulkan der Tremor erzeugt muss auch tatsächlich eruptieren. Manchmal bleibt das Magma trotzdem noch in der Erdkruste stecken, obwohl schon Tremor eingesetzt hat.

Tremor entwickelt sich für gewöhnlich aus Niederfrequenz-Erdbeben mit langen Perioden. Sie folgen immer schneller aufeinander, bis es zu einer durchgehenden Tremorphase kommt.
Im Allgemeinen treten Schwingungen mit einer Frequenz zwischen 1-5 Hertz (Hz) auf. In der Literatur jüngeren Datums geht man von einem Frequenzband zwischen 0,5 und 7 Hz aus. Vor der Eruption schwingt der Tremor mit Frequenzen zwischen 0,5 und 2 Hertz. Während der Eruption tauchen Frequenzen zwischen 1 und 7 Hz auf. Es wurden aber auch deutlich höhere Frequenzen bis 20 Hz beobachtet.

Magmawackeln verursacht Tremor

Vulkanologen sind erstaunt darüber, dass sich der Tremor praktisch an allen Vulkanen gleich verhält, obwohl es viele Unterschiede in den Fördersystemen der Vulkan gibt. Diese Unterschiede sollten eigentlich auch den Tremor beeinflussen, was aber offensichtlich nicht der Fall ist. Erst vor wenigen Jahren lieferten Wissenschaftler der Universität von British Columbia eine Erklärung dazu. Sie erstellten ein mathematisches Modell, nach dem der Tremor durch eine Interaktion von aufsteigendem Magma mit Gas ausgelöst wird. Das Magma soll demnach von einer Gashülle umgeben sein die das Magma zum wackeln bringt. Das wackelnde Magma sendet die Vibrationen aus, die die Seismografen als Tremor registrieren.

Verwandte Artikel zum Vertiefen des Themas:

Tsunami

Ein Tsunami ist eine gefürchtete Riesenwelle, die ein großes zerstörerisches Potenzial aufweist. Tsunami ist ein Begriff aus dem Japanischen und bedeutet „Hafenwelle“. Sie baut sich erst im flachen Wasser zur vollen Höhe auf und kann sich kilometerweit ins Landesinnere schieben. Dort richtet sie große Zerstörungen an. Tsunamis entstehen zu 90% durch Erdbeben unter dem Meeresboden: wenn sich der Meeresboden explosionsartig vertikal verschiebt kann eine Welle angereget werden. Dazu sind Erdbeben mit Magnituden größer als 7 notwendig, sowie ein flaches Hypozentrum. Aber nicht bei jedem starken Erdbeben kommt es zu einem vertikalen Versatz des Meeresbodens. Zudem können Tsunamis durch submarine Hangrutschungen generiert werden, oder wenn große Massen ins Meer eingebracht werden. Dies kann bei Vulkanausbrüchen geschehen, meistens in Verbindung mit dem (partiellen) Kollaps vulkanischer Strukturen. Ein normaler Bergsturz, bei dem die Gesteinsmassen ins Wasser krachen, kann ebenfalls  einen Tsunami auslösen.

Das Besondere an einem Tsunami ist, dass er in tiefem Wasser keine hohen Wellenberge aufbaut und selten Wellen erzeugt, die höher als 1 m sind. Dafür ist die Wellenlänge sehr groß und kann viele Kilometer betragen. Bei Tsunami-Wellen handelt es sich um Scherwellen mit der Charakteristik von Flachwasserwellen. Selbst im tiefen Ozean bewegt sich die gesamte Wassersäule bis zum Grund des Ozeans.

Tsunamis breiten sich sehr schnell aus und können bis zu 800 km/h schnell werden. Damit sind sie in etwas so schnell wie ein Passagierflugzeug und können binnen weniger Stunden ganze Ozeane durchqueren.

Welche Warnzeichen eines herannahenden Tsunamis gibt es?

Wenn man sich weit vom Erdbebenzentrum entfernt befinden, wohl möglich sogar auf einem anderen Kontinent, spürt man das auslösende Erdbeben nicht. Wenn man dann auch keine Medien konsumiert, ist man wahrscheinlich ahnungslos, dass sich eine Katastrophe anbahnt. Befindet man sich and er Küste mit blick aufs Meer, kann es trotzdem eine Warnung geben: wenn sich das Meer plötzlich weit zurückzieht, sollte man anfangen so schnell wie möglich höher gelegenes Gelände aufzusuchen. Notfalls auf das Dach eines stabilen Gebäudes aus Beton fliehen. Dabei sollte man mindestens das 5-6 Stockwerke erreichen.

Berüchtigte Tsunamis

Zerstörungen an de japanische Küste. © U.S. Marine Corps photo by Lance Cpl. Garry Welch

Einer der bekanntesten und katastrophalsten Tsunamis dürfe jener vom 26. Dezember 2004 sein, der durch ein Erdbeben der Magnitude 9,3 bei Sumatra ausgelöst wurde. In der Folge entstanden mehrere Wellen, die quer durch den Indischen Ozean reisten. In 8 asiatischen Ländern und an der Küste Ostafrikas starben mindestens 231.000 Menschen. Es war eine der folgenschwersten Naturkatastrophen der Neuzeit und galt als Jahrhundert-Ereignis.

Nur wenige Jahre später –am 11. März 2011– gab es eine ähnliche Katastrophe in Japan. Das  Tōhoku-Erdbeben mit der Magnitude 9,0 verursachte Tsunamis an der Ostküste Japan. In der Folge starben nicht nur Menschen, sondern das Atomkraftwerk von Fukushima havarierte und es kam zur Kernschmelze. Nach behördlichen Angaben gab es 15.844 Tote und 3.450 Vermisste.

Tsunamis, die durch Vulkankatastrophen verursacht wurden, ereigneten sich gleich 2 Mal am indonesischen Inselvulkan Krakatau. Die erste Tragödie spielte sich 1883 ab. Mindestens 36.000 Menschen starben in den Wellen, als der Inselvulkan infolge starker Eruptionen kollabierte. Eine kleinere Katastrophe spielte sich am 22. Dezember 2018 ab, als Anak Krakatau dem Beispiel des ursprünglichen Vulkans folgte. In einem vergleichsweise kleinen Tsunami kamen 439 Menschen um.

Tube

Tube ist ein Begriff aus dem Englischen und bedeutet in unserem Fall Röhre, bzw. Tunnel. Solche Lavatunnel können sich an Vulkanen bilden, wenn ein Lavastrom an der Oberfläche erstarrt, darunter aber weiter fließt.  Die Lava fließt dann durch eine Tube. Die erstarrte Schicht des Deckels, bzw. Daches isoliert den Lavastrom vor weiterer Abkühlung. Daher kann ein Lavastrom in einer Tube große Entfernungen zurück legen. Auf Hawaii fließen die Lavaströme in diesen Tubes bis zu 12 km und münden dann ins Meer. Wenn die Eruption endet und die Lava abgelaufen ist, dann kann ein Tunnel im Lavafeld zurück bleiben.

Auf Hawaii zählt die Thurston Lava Tube zu den bekanntesten Lavahöhlen. Die polynesischen Ureinwohner Hawaiis nannten sie „Nahuku“. Die Tube entstand bei einem Ausbruch des Kilaueas vor gut 500 Jahren und ist auf einer Länge von 180 m begehbar.

Die Insel Lanzarote ist bekannt für diese Tubes, die oft erschlossen wurden und zu besichtigen sind. Bei manchen Tubes sind die Tunneldecken eingestürzt und es blieben quasi Schluchten zurück. Auf Lanzarote baute man dort Häuser hinein, die wegen ihrer besonderen Architektur als künstlerische Bauwerke beliebte Touristenziele sind. Die wohl größte Lavahöhle auf Lanzarote ist die Cueva de los Verdes: sie hat eine Länge von 7 km. Im unteren Teil befindet sich die Jameos de Agua, die vom Architekten und Künstler Cesar Manrique gestaltet wurde.

Am Ätna ist die Grotta di Gela berühmt, weil sich dort bis weit in den Sommer hinein ein dicker Eispanzer hält. Im Winter ist die Grotte, bei der es sich um eine Tube handelt, fast komplett zugefroren. Angeblich wurde das Eis früher genutzt, um daraus Fruchteis herzustellen. Ein natürlicher Kühlschrank, in dem sich indirekt Feuer und Eis begegnen. Bei der Eruption von 1999 flossen mehrere Lavaströme in Tubes. Durch ein eingestürztes Dach konnte ich filmen, wie die Lava darunter floss. Natürlich nicht, ohne heiße Füsse zu bekommen.