Studie will Kohlendioxid als treibende Kraft des Aufstiegs basaltischer Magmen identifiziert haben
Eine kürzlich veröffentlichte Studie könnte möglicherweise einen Paradigmenwechsel in der Vulkanologie einleiten: Bisher gingen Vulkanforscher davon aus, dass Wasserdampf eine wesentliche Rolle beim Aufstieg von Magma spiele und Kohlendioxid lediglich ein Begleitgas sei. Doch nun hat ein Team von Forschern der amerikanischen Cornell-Universität herausgefunden, dass Kohlendioxid eine bedeutendere Rolle spielt als bisher angenommen. Wasser und Kohlendioxid existieren im Erdmantel in Form von Flüssigphasen und können je nach Druck- und Temperaturbedingungen verschiedene Aggregatzustände annehmen. Sie beeinflussen die Dichte und Fließeigenschaften der Schmelze und wirken sich auf den Druck innerhalb eines Magmakörpers aus, was letztlich den Aufstieg und das eruptive Verhalten des Magmas beeinflusst.
Bisher wurde Kohlendioxid zwar als eine Komponente betrachtet, die dazu beiträgt festzustellen, ob eine Schmelze in die Erdkruste eindringt und aufsteigt. Oft bleibt ein Magmakörper in der Erdkruste stecken und differenziert, bevor es zum endgültigen Aufstieg des Magmas und zum Vulkanausbruch kommt. Im Magmakörper finden chemische und physikalische Prozesse statt, bei denen Kristalle und Flüssigphasen entstehen. Irgendwann steigt der Gasdruck im Magmakörper so stark an, dass die Schmelze aufsteigt und ausbricht. Allerdings bildet sich nicht bei jedem Vulkanausbruch Monate oder Jahre vorher ein Magmakörper in der Erdkruste. Besonders bei Vulkanen, die basaltisches Magma ausstoßen und nicht an Kontinentalrändern liegen, wurde in den letzten Jahren beobachtet, dass die Schmelze direkt aus dem Erdmantel aufzusteigen scheint. Bei einigen dieser Eruptionen trat zuerst eine magmatische Ganggesteinsintrusion auf, die in den ersten Tagen des Ausbruchs leer lief. Das anschließend aufsteigende Magma stammte aus Tiefen von mehr als 20 km und schien direkt ohne Unterbrechung in der Erdkruste aufzusteigen. Dies wurde bei der ersten Eruption am isländischen Fagradalsfjall, auf La Palma und Hawaii sowie am Pico do Fogo auf den Kapverdischen Inseln beobachtet.
Die Forscher um den Studienleiter Esteban Gazel untersuchten Proben dieses Vulkanausbruchs, bei dem im Jahr 2014 eine ganze Ortschaft dem Erdboden gleichgemacht wurde. Sie verwendeten eine neu entwickelte Methode zur Quantifizierung winziger Flüssigkeitseinschlüsse in Kristallen. Diese Methode basiert auf einer Weiterentwicklung der Raman-Spektroskopie und nutzt eine Laser-Mikrosonde. Gazel vergleicht die untersuchten Fluideinschlüsse mit Zeitkapseln, die Aufschluss über die Entstehungsgeschichte des zugrunde liegenden Magmas geben können. Es stellte sich heraus, dass die Fluideinschlüsse deutlich mehr Kohlendioxid als Wasser enthielten. Daraus schließen die Forscher, dass eben dieses Kohlendioxid eine entscheidende Rolle in den eruptiven Prozessen gespielt hat.
In Zukunft könnte Kohlendioxid also eine größere Rolle bei der Vorhersage von Vulkanausbrüchen spielen. Dies gilt insbesondere für basaltische Intraplattenvulkane, die oft über sogenannten Hotspots liegen. Übrigens zählen auch die Vulkane der Eifel zu diesen Vulkanen. Besonders am Laacher-See-Vulkan tritt vulkanisches Kohlendioxid aus. Die neue Studie könnte somit eine Grundlage dafür liefern, den Vulkanismus in der Eifel neu zu bewerten.