Mount Adams – Steckbrief

Gipfel des Mount Adams. © Alek Newton, Unsplash-Lizenz

Mount Adams ist ein aktiver Vulkan der US-amerikanischen Kaskadenkette und wird nur vom benachbarten Mount Rainier überragt. Nach dem Mount Shasta ist er der flächenmäßig zweitgrößte Vulkan in der Kaskadenkette. Der voluminöse Vulkan umfasst den 290 Kubikkilometer großen Stratovulkan Mount Adams sowie ein Vulkanfeld mit mehr als 60 Förderschloten.

Die Ursache für den Vulkanismus der Kaskadenkette liegt in der Subduktion der ozeanischen Juan-de-Fuca-Platte unter die nordamerikanische Kontinentalplatte. Dieser Prozess findet entlang der Cascadia-Subduktionszone statt, einer tektonischen Plattengrenze vor der Westküste Nordamerikas.

Mount Adams förderte vor allem Lava andesitischer bis dazitischer Zusammensetzung und war sowohl explosiv als auch effusiv tätig.

Der Vulkanismus am Mount Adams begann vor etwa 940.000 Jahren. Seitdem gab es drei Hauptstadien der Kegelbildung, die vor 500.000, 450.000 und 30.000 Jahren stattfanden. Das Vulkangebäude besteht aus mehreren sich überlappenden Kegeln, die in diesen Perioden infolge starker Eruptionen wuchsen.

Der Vulkan war während des gesamten Holozäns aktiv und produzierte zwei Dutzend kleinere explosive Eruptionen aus verschiedenen Förderschloten. Zwischen 2100 und 2600 Metern Höhe befinden sich sechs holozäne Lavaströme. Die voluminösesten Lavaströme, von denen einige mehr als 10 km lang sind, wurden zwischen etwa 7000 und 4000 Jahren vor heute eruptiert.

Die letzte Eruption mit einem VEI2 (Vulkanexplosivitätsindex) fand vor etwa 1000 Jahren statt und erzeugte eine kleinere Tephra-Schicht sowie möglicherweise einen kleinen Lavastrom an der Ostflanke des Mount Adams.

Obwohl der Vulkan aus menschlicher Sicht lange inaktiv war, zählt er zu den potenziell aktiven Vulkanen, von denen ein gewisses Gefahrenpotenzial ausgeht. Er liegt nicht nur in Sichtweite des bekannteren Mount St. Helens, sondern auch zwischen den Metropolen Seattle und Vancouver. Im Falle einer starken explosiven Eruption könnten diese Städte von einem Vulkanausbruch betroffen sein. Da der Gipfel des Vulkans vergletschert ist, könnte es im Falle eines Ausbruchs zu Laharen kommen, die große Strecken zurücklegen und ein hohes Gefahrenpotenzial haben.

Mount Adams liegt in einem abgelegenen Naturreservat, das nur über zwei Highways erreichbar ist. Wie die anderen Kaskadenvulkane auch, stellt er ein beliebtes Ausflugsziel dar und wird von Wanderern und Bergsteigern stark frequentiert. Es gibt 25 offizielle Routen auf den Gipfel. Wer den 3743 Meter hohen Vulkan besteigen will, sollte daran denken, dass er sich dort in hochalpinem Gelände bewegt.

Jüngste Ereignisse am Mount Adams

Am 20. Oktober 1997 ereignete sich auf der Ostflanke des Mount Adams eine große Schuttlawine. Seismometer registrierten den Abgang. Er fing um 00:31 Uhr an und dauerte etwa sechs Minuten. Es gab keine seismischen Vorläufer.

Im September 2024 wurden sechs Erdbeben unter dem Mount Adams detektiert, was deutlich über dem langjährigen Mittel lag. Darauf hin beschloss man das seismische Netzwerk auszubauen, um künftige Entwicklungen besser im Blick zu haben.

Island: Erdbeben M 3,9 am Bardarbunga

Zwei mittelstarke Erdbeben M 3,9 und M 3,7 erschütterten auf Island subglazialen Vulkan Bardarbunga

Datum 05.10.24 | Zeit: 10:37:32 UTC |  64.613 ; -17.490 | Tiefe: 2,7 km | Mb 3,9

Heute Mittag kam es auf Island am subglazialen Vulkan Bardarbunga zu einem seismischen Doppelschlag in Form von zwei Erdbeben mit Magnituden von 3,9 und 3,7. Sie traten mit nur wenigen Sekunden Abstand auf und wurden 3,6 Kilometer süd-südöstlich des Calderazentrums verortet. Die Erdbebenherde lagen in 2,7 und 3,0 Kilometer Tiefe. Es gab einige schwächere Beben, doch ein Schwarm blieb aus. Die Beben am Bardarbunga könnten mit einer langsamen Magmaakkumulation in Verbindung stehen, die bereits nach der Eruption von 2014 einsetzte. Allerdings ist vorerst nicht mit einem neuerlichen Ausbruch des Vulkans zu rechnen.

Natürlich gab es auch an anderen Orten auf Island Erdbeben. Interessant ist ein kleiner Schwarm im westlichen Bereich der Katla, wobei einige Beben auch in der Nähe des Fimmvörðuháls-Passes lagen. Eine GPS-Messstation verzeichnet dort tatsächlich eine leichte Bodenhebung, die sich in den letzten Wochen auf 2 Zentimeter summierte. Ob sich hieraus jedoch ein längerfristiger Trend ergibt oder ob sich die vermeintliche Bodenhebung bald wieder verflüchtigt, ist unklar.

Selbstverständlich dürfen in einem Beitrag über Erdbeben auf Island die Geschehnisse auf der Reykjanes-Halbinsel nicht unerwähnt bleiben: Hier setzt sich der Trend der letzten Tage fort, dass es vor allem im Krýsuvík-System und am Fagradalsfjall bebt. 37 Erschütterungen wurden hier innerhalb von zwei Tagen registriert. Leider ist das GPS-Netzwerk in diesem Bereich stark ausgedünnt, sodass eine lokal begrenzte Bodenhebung möglicherweise unbemerkt bleibt. Was man am Fagradalsfjall erkennen kann, ist eine leichte Hebung, die wahrscheinlich der Hebung im Svartsengi-Bereich geschuldet ist. Bei Krýsuvík hingegen sieht man eine leichte Subsidenz, also eine Absenkung des Bodens, nachdem es im letzten Jahr eine geringe Hebung gegeben hatte.

Neuseeland: Erdbeben Mb 5,7 nahe Wellington

Cook-Strait in Neuseeland von starkem Erdbeben erschüttert – Mehrere Wahrnehmungsmeldungen

Datum 05.10.24 | Zeit: 16:08:55 UTC |  -41.179 ; 174.226 | Tiefe: 53 km | Mb 5,7

Ein vergleichsweise starkes Erdbeben der Magnitude 5,7 erschütterte um 16:08 UTC (05:05 Lokalzeit) die Cook Strait zwischen den beiden neuseeländischen Hauptinseln. Dies geht aus einer automatischen Meldung von GeoNet hervor. Das Epizentrum wurde 22 km nordöstlich von Picton lokalisiert. Die Hauptstadt Wellington liegt 48 Kilometer östlich des Epizentrums. Dort wackelten die Gebäude stark, insbesondere in den oberen Etagen von Hochhäusern. Beim EMSC, das die Magnitude des Erdbebens mit 5,4 einstufte, gingen bereits Minuten nach dem Erdstoß erste Wahrnehmungsmeldungen ein. Einige Augenzeugen beschrieben den Erdstoß als stark, andere hingegen als schwach.

Erdbeben dieser Magnitude können bereits Schäden an der Infrastruktur verursachen. Da sich das Beben jedoch in einer Tiefe von 53 Kilometern ereignete, dürften die Auswirkungen an der Erdoberfläche nicht so stark gewesen sein, dass man mit großen Schäden rechnen muss. Dennoch könnten leichte Schäden entstanden sein. Da die Meldung zu dem Erdbeben noch nicht einmal eine Stunde alt ist, könnten Berichte über Schäden noch folgen.

Erdbeben in der Cook Strait sind keine Seltenheit: Erst am 1. Oktober gab es hier ein Beben der Magnitude 4,7. Schwächere Erdbeben treten phasenweise mehrmals wöchentlich auf, doch Erschütterungen ab einer Magnitude von 5 sind deutlich seltener.

Übergeordnet betrachtet wird die Tektonik Neuseelands von den großen Verwerfungszonen bestimmt, die parallel zur Längserstreckung des Archipels verlaufen und mit der Subduktion der Pazifikplatte unter die Australische Platte zusammenhängen. Im Bereich der Cook Strait laufen mehrere dieser Störungen zusammen. Es gibt aber auch kleinere Störungen, die senkrecht zu den Hauptstörungen verlaufen und diese miteinander verbinden. Im Bereich des Epizentrums liegen mehrere dieser kleineren Störungen. Am wahrscheinlichsten erscheint es, dass die Vernon-Störung für das Beben verantwortlich war. Betrachtet man die Tiefe des Erdbebenherds, könnte sich der Erdstoß jedoch auch in einem Stück subduzierter Kruste ereignet haben.

Campi Flegrei mit kleinem Erdbebenschwarm am 5. Oktober

Kleiner Erdbebenschwarm erschüttert Calderavulkan Campi Flegrei – Stärkstes Beben Mb 2,4

Datum 05.10.24 | Zeit: 04:00:01 UTC | 40.8355 ; 14.1288 | Tiefe: 2,6 km | Mb 2,4

Der süditalienische Calderavulkan Campi Flegrei wurde heute Morgen um 6:00 Uhr Ortszeit von einem Erdbeben der Magnitude 2,4 erschüttert. Das Hypozentrum befand sich in 2600 m Tiefe, in der Grenzregion zwischen den porösen Gesteinen, in denen das Hydrothermalsystem eingebettet ist, und der massiven Deckschicht, die die Caldera nach oben hin abdichtet. Die Magnitude des Bebens deutet darauf hin, dass es zu einer Rissbildung im Gestein gekommen sein könnte. Das Epizentrum wurde nordwestlich der Solfatara, nahe der Ringstraße, lokalisiert. Im Anschluss folgten sieben weitere Beben geringerer Magnituden, wobei das zweit- und drittstärkste Beben Magnituden von 1,7 und 1,5 erreichten. Die drei stärksten Beben wurden von den Anwohnern in der näheren Umgebung der Epizentren wahrgenommen, und das stärkste Beben war sogar noch in Neapel spürbar, obwohl die Wahrnehmbarkeitsgrenze für Erdbeben normalerweise bei einer Magnitude von 3,0 liegt. Da die Erdbebenherde jedoch sehr flach lagen, sind in Pozzuoli und Neapel oft auch schwächere Erdstöße spürbar.

Die Erdbeben entfachen erneut Diskussionen um die Sicherheit der Bürger, die in der Roten Gefahrenzone der Campi Flegrei leben. Da die Seismizität und die Bodenhebung seit Anfang August nachgelassen haben, rückte das Thema etwas aus dem Blick der Öffentlichkeit. Vorgestern fand im Vorfeld der Katastrophenschutzübung „EXE Flegrei 2024“ ein Treffen zwischen Wissenschaftlern, Behördenvertretern und den Bürgern der Roten Zone statt. Bei diesem Treffen betonte Mauro Di Vito, Direktor des INGV-Vesuv-Observatoriums, dass der Vulkan Campi Flegrei weiterhin in einer langanhaltenden Phase der Unruhe sei. Seit 2012 steht der Vulkan auf gelbem Alarmniveau, bedingt durch seismische Aktivität, Bodenverformungen, starke geothermische Aktivität und intensive Entgasung. Trotz des Rückgangs der Bodenhebungen auf 10 mm pro Monat und der Verringerung der Erdbebenaktivität in letzter Zeit sei dies kein Hinweis auf das Ende der vulkanischen Dynamik.

Während des Treffens wurden die geplanten Maßnahmen und Teilnahmebedingungen der bevorstehenden Evakuierungsübung, die zwischen dem 9. und 12. Oktober durchgeführt wird, vorgestellt. Neben Di Vito erläuterten auch Vertreter des Katastrophenschutzes die möglichen Risiken und den Ablauf der Übungen. Die Bürger hatten die Möglichkeit, Fragen zu stellen und sich über Schutzmaßnahmen gegen vulkanische Gefahren zu informieren.

Die Campi Flegrei, ein aktiver Supervulkan in der Nähe von Neapel, sind durch intensive hydrothermale und seismische Aktivitäten gekennzeichnet, die kontinuierlich überwacht werden. In den letzten Jahren stellten Wissenschaftler eine zunehmende Häufigkeit von Erdbebenschwärmen und Bodenhebungen fest, was auf eine steigende magmatische Aktivität hinweist. Die Region bleibt unter ständiger Beobachtung, da zukünftige Eruptionen potenziell verheerende Auswirkungen auf die umliegenden Gebiete haben könnten.

Taal-Vulkan: VONA-Warnung zu einer Aschewolke

Phreatomagmatische Eruption erzeugte Aschewolke am Taal-Vulkan – VAAC veröffentlichte VONA-Warnung

Am philippinischen Taal-Vulkan ist es heute zu einer Eruption gekommen, die eine dünne Aschewolke erzeugte, die bis auf eine Höhe von 2400 m aufstieg und in Richtung Südwesten driftete. Das geht aus einer VONA-Meldung des VAAC Tokio hervor. Natürlich berichtete auch das zuständige Institut PHILVOLCS über die Eruption, die in Verbund mit 5 schwächeren phreatischen Eruptionen auftrat. Wie gewohnt manifestierten sie sich aus dem Kratersee von Volcano Island. Die Flanke der kleinen Vulkaninsel heben sich infolge von Magmeninflation.

Die Eruption, die die Vulkanasche aufsteigen ließ, wird von den Vulkanologen als phreatomagmatisch bezeichnet. Sie soll 4 Minuten lang gedauert haben und förderte neben der Asche eine Schlammfontäne aus Wasser und Sedimenten vom Seegrund. Phreatische Eruptionen traten in der vergangenen Woche häufig auf und offenbar werden sie immer stärker. Seit dem 22. September wurden gut 30 dampfgetriebene Eruptionen gezählt. Bereits am Donnerstag wurde ein Ausbruch als phreatomagmatisch bezeichnet.

Der Unterschied zwischen phreatischen- und phreatomagmatischen Eruptionen ist signifikant: Während bei phreatischen Eruptionen kein frisches Magma direkt an der Eruption beteiligt ist, verhält es sich bei phreatomagmatischen Eruptionen anders, denn hier entstehen die Explosionen durch direkten Kontakt von Magma mit Wasser, wodurch fragmentierte Tephra mit ausgestoßen werden kann, so dass Aschewolken entstehen. Bei phreatischen Eruptionen fehlt dieser direkte Kontakt zwischen Wasser und Magma und es kommt zu reinen Dampfexplosionen, die ihre Energie vom aufgeheizten Untergrund erhalten. Das Magma steht in diesem Fall also tiefer im Fördersystem, während es bei phreatomagmatischen Eruptionen kurz unter der Oberfläche steht. Es ist generell aber nicht ausgeschlossen, dass auch phreatische Eruptionen so stark sind, dass bereits abgelagerte Lava aus dem Schlotbereich fragmentiert und ausgestoßen wird, was in dem vorliegenden Fall ebenfalls möglich ist. Klarheit könnte eine Analyse von Ascheproben geben, vorausgesetzt, es wurden bereits früher welche analysiert. Leichter Ascheniederschlag wurde aus dem Ort Agoncillo in Batangas gemeldet. Sollte es sich bei dem gemeldeten Ereignis tatsächlich um eine phreatomagmatische Eruption gehandelt haben, wäre jetzt der richtige Zeitpunkt, die Alarmstufe auf „2“ zu erhöhen.

Momentan steht sie noch auf „1“. Dies bedeutet, dass der Vulkan sich in einem abnormalen Zustand befindet, in dem plötzliche phreatische Explosionen, Erdbeben und Ascheausstöße möglich sind. Das Betreten der Taal-Vulkaninsel (TVI) und der permanenten Gefahrenzone (PDZ) bleibt verboten. Lokale Behörden sollten die Lage überwachen und entsprechende Vorsichtsmaßnahmen treffen. Auch Piloten wird geraten, Flüge in der Nähe des Vulkans zu vermeiden, da Asche in der Luft eine Gefahr für den Flugverkehr darstellen kann.

Spektakuläre Wasserhose in Italien gefilmt

Spektakuläre Wasserhose vor der italienischen Küste gesichtet – Keine Schäden gemeldet

Vor der Küste von Montesilvano in der Provinz Pescara entstand eine spektakuläre Wasserhose. Zum Glück blieb sie auf See und richtete keine Schäden an, so dass man sie als fantastischen Naturphänomen ansehen kann. Tatsächlich filmten Augenzeugen das Ereignis und teilten das Video bei Facebook.

Wasserhosen entsprechen im wesentlichen Tornados und werden zu solchen, wenn sie vor den Küsten nicht halt machen und über Land weiterziehen. Dort haben sie dann ein großes Zerstörungspotenzial, das Wasserhosen nur dann entfalten, wenn sie auf Schiffe oder Personen im Wasser treffen.

Eine Wasserhose besteht aus einem rotierenden Luftwirbel, der Wassertropfen mit sich reißt und so eine sichtbare Säule bildet, die von der Wasseroberfläche bis zu einer Wolke reicht.


Es gibt zwei Hauptarten von Wasserhosen:

  1. Tornadische Wasserhose: Diese entsteht aus denselben Bedingungen wie ein Tornado, aber über Wasser.
  2. Nicht-tornadische Wasserhose: Diese entsteht durch die Bildung von starken Aufwinden und entwickelt sich aus nicht so heftigen Gewittern oder konvektiven Wolken.

Wasserhosen sind oft weniger zerstörerisch als Tornados, aber sie können gefährlich für Schiffe und Boote sein, da sie starke Winde und große Wellen verursachen können.

Tornadische Windhosen entstehen durch eine Kombination aus instabiler Atmosphäre, Windschere und starken Aufwinden. Zunächst treffen feuchtwarme Luft am Boden und kühle Luft in höheren Schichten aufeinander, was eine instabile Wettersituation schafft. Durch Windschere beginnt die Luft in verschiedenen Höhen unterschiedlich zu wehen, was eine horizontale Rotation erzeugt. Starke Aufwinde in Gewittern ziehen diese rotierende Luft in die Höhe, wodurch eine vertikale Rotation entsteht, bekannt als Mesozyklon. Wenn sich dieser Wirbel verstärkt und den Boden erreicht, bildet sich ein Tornado oder eine Windhose. Er entsteht aus einem rotierenden Luftschlauch, der sich von der Wolke bis zum Boden erstreckt.

Warmes Meerwasser über das eine Kaltluftfront hinweg zieht begünstigt die Entstehung von Stürmen. Das Mittelmeer ist aktuelle bis zu 24 Grad warm, was am oberen Ende des Spektrums für den Monat Oktober liegt.

Jan Mayen Gegend: Erdbebenserie am 04.10.24

Erdbebenserie nahe nördlichst gelegener Vulkaninsel Jan Mayen – Stärkstes Beben M 5,2

Datum 04.10.24 | Zeit: 13:49:02 UTC | 70.735 ; -14.718 | Tiefe: 10 km | Mb 5,2

Im Nordatlantik begann gestern eine Erdbebenserie, die sich bis heute fortsetzte. Sie besteht aus sechs Erdbeben mit Magnituden zwischen 4,5 und 5,2. Die Hypozentren lagen in 10 Kilometern Tiefe. Die Epizentren manifestierten sich westlich der Vulkaninsel Jan Mayen, die mit dem Beerenberg-Vulkan den nördlichst gelegenen Vulkan der Erde beherbergt. Verortet wurden die Erdbeben 533 km nördlich von Norðurþing auf Island. Reykjavík liegt fast 800 km südlich der Epizentren.

Die Erdbeben standen wahrscheinlich mit der Divergenz am Kolbeinseyrücken im Zusammenhang, an dessen nördlichem Endpunkt Jan Mayen liegt. Der Kolbeinseyrücken ist die Verlängerung des Mittelatlantischen Rückens, der sich nördlich von Jan Mayen im Mohns-Ridge fortsetzt, allerdings mit einem seitlichen Versatz entlang der Jan-Mayen-Fracture-Zone, die grob in Ost-West-Richtung verläuft.

Südlich des Kolbeinseyrückens liegt übrigens der allseits bekannte Reykjanesrücken. Zwischen den beiden Fragmenten der Mittelatlantischen Rückens liegt Island. Die Erdbeben dort und bei Jan Mayen stehen nicht in direkter Wechselwirkung, haben aber größtenteils den gemeinsamen divergenten Ursprung entlang der Kontinentalgrenze zwischen Eurasien und Nordamerika.

Erdbeben auf Island

Die Erdbebentätigkeit auf Island hält weiter an: Auf der gesamten Insel ereigneten sich innerhalb von 48 Stunden 110 Erdbeben. Darunter waren einige Beben unter dem Hofsjökull, wo Forscher auch eine zunehmende Aktivität der Caldera unter dem Gletscher sehen. Auf Reykjanes bebt es weiterhin überwiegend bei Krysuvik und am Fagradalsfjall. Die Bodenhebung bei Svartsengi bleibt hoch und summierte sich inzwischen seit dem Ende der letzten Eruption auf gut 14 Zentimeter auf. In gut 5-6 Wochen sollte sich der Boden dann wieder ungefähr so viel gehoben haben, wie vor Beginn der letzten Eruption. Ab diesem Zeitpunkt wächst die Wahrscheinlichkeit eines weiteren Ausbruchs rasant an.

Der letzte größere Ausbruch des Beerenberg-Vulkans auf Jan Mayen ereignete sich 1970. Fünfzehn Jahre später gab es eine kleine Eruption. Auf der geologischen Zeitskala sind diese Ausbrüche gerade erst vorbei und es könnten weitere folgen. Konkrete Anzeichen hierfür sind mir allerdings nicht bekannt.

Stromboli: Intensives Lavaspattering in der Nacht

Nächtliche Phase von intensivem Lavaspattering am Stromboli – Tremor schoss in den Höhe

Ein Blick auf den Tremorgraphen des Stromboli zeigte mir soeben, dass es in der vergangenen Nacht zu einer erhöhten Aktivität des Vulkans gekommen sein muss. Der Graph offenbarte einen Ausschlag, der weit in den roten Bereich hineinragte. Obwohl das INGV bislang keine Informationen zu dem Ereignis veröffentlicht hat, weist das LGS in seinem komprimierten täglichen Update kurz darauf hin: Gegen 1 Uhr nachts kam es zu einer intensiven Phase von Lavaspattering, die, wie üblich, vom nordöstlichen Kratersektor ausging. Diese Phase dauerte nur etwa eine Stunde an, sodass es vermutlich lediglich zu einem kleinen Lavastrom kam, der sich im oberen Bereich der Sciara del Fuoco bewegte.

Dem Update zufolge sind die Messinstrumente, die Daten zur explosiven Aktivität liefern, wieder online. Gestern wurden nur sieben strombolianische Eruptionen im nordöstlichen Kratersektor registriert, bevor es zur Lavaspattering-Phase kam. Der gemessene Explosionsdruck lag bei 0,9 bar, was leicht unter dem Durchschnitt liegt. Zudem wurden erneut hohe Kohlendioxidwerte gemessen, die bei 2100 Tonnen pro Tag lagen. Die Schwefeldioxid-Emissionen beliefen sich auf moderate 75 Tonnen pro Tag.

Auch die Steinschlagaktivität war mit 18 aufgezeichneten Ereignissen am Tag sehr hoch. Am Stromboli können Steinschläge auf drei Arten entstehen: Durch starke Explosionen, die größere Tephrabrocken auf die Sciara del Fuoco schleudern, wo sie hinunterrollen und weiteres Gestein mobilisieren können. Eine andere Möglichkeit sind Lavaströme, von deren Fronten und Seitenrändern Lavabrocken abbrechen. Instabilitäten und Kollapsereignisse am Krater oder entlang der Sciara del Fuoco können ebenfalls Steinschläge auslösen. Natürlich ist auch eine Kombination dieser Faktoren möglich. Ich vermute, dass die aktuell erhöhte Steinschlagaktivität mit dem Lavastrom vom 1. Oktober zusammenhängt. Auch wenn dieser inzwischen erstarrt ist, können weiterhin Lavabrocken von ihm abbrechen.

Taal mit weiteren phreatischen Eruptionen am 3. Oktober

Calderavulkan Taal generierte am Donnerstag 2 weitere phreatische Eruptionen – Schwefeldioxidausstoß gestiegen

Auf der philippinischen Insel Luzon ist der Taal-Vulkan weiterhin aktiv und eruptierte gestern zwei Mal phreatisch. Die Eruptionen dauerten 2 Minuten und förderten Dampfwolken, die bis zu 2000 m hoch aufstiegen. Vulkanisch bedingte Erdbeben wurden keine aufgezeichnet, während der Schwefeldioxid-Ausstoß weiter zunahm und sich auf 3267 Tonnen am Tag belief. Das meiste Gas entweicht am Kraterboden. Entsprechend aufgewühlt ist das Wasser des Kratersees, in dem heiße Fluide für Turbulenzen sorgen.

Wie PHILVOLCS mitteilte, wird weiterhin eine Bodenhebung im Bereich von Volcano Island festgestellt, in deren Kratersee die phreatischen Eruptionen erscheinen. Übergeordnet wird im Rest der Taal-Caldera eine Bodenabsenkung gemessen. Man kann davon ausgehen, dass die Bodenhebung von Volcano Island mit einer Magmenintrusion zusammenhängt, während ich vermute, dass die Subsidenz der restlichen Caldera mit Entwicklungen im Hydrothermalsystem zusammenhängt.

Spektakulärer als die phreatischen Eruptionen von gestern war die letzte der drei Dampfausbrüche am Vortag. Sie manifestierte sich am 2. Oktober um 16:29 Uhr Lokalzeit und erzeugte eine vergleichsweise große Eruptionsfontäne, die Wasser und Schlamm aus Seesedimenten so weit auswarf, dass praktisch der gesamte Krater davon eingedeckt wurde. Sehr schön ist das in der zweiten Hälfte des unten eingebetteten Videos zu sehen.

PHILVOLCS hält seine Warnung vor einem Betreten der Vulkaninsel aufrecht und schließt auch Eruptionen nicht aus, die Vulkanasche fördern könnten. Das Risiko weiterer phreatischer Eruptionen ist groß. Außerdem kann es bei Inversionswetterlagen zur Bildung von VOG kommen, der auch Ortschaften am Rand des großen Calderasees, in dem sich Volcano Island befindet, beeinträchtigen kann. Bewohner sollen sich in solchen Situationen mit Atemmasken vor der Gasverschmutzung schützen.

Hoher Gasausstoß am Kanlaon

Der Taal ist nicht der einzige Vulkan der Philippinen, der einen starken Gasflux erzeugt. Der Kanlaon stieß gestern 5177 Tonnen Schwefeldioxid aus und erzeugte 10 vulkanotektonische Erdbeben. Der Vulkan könnte sich auf einen Vulkanausbruch vorbereiten.