Rätsel um das Fehlen von Schwefeldioxid-Emissionen in der Yellowstone-Caldera gelöst
Unter der idyllischen Landschaften des Yellowstone-Nationalparks mit ihren weiten Wäldern und Prärien verbirgt sich eines der gewaltigsten Vulkansysteme der Erde: die Yellowstone-Caldera. Sie entstand durch mehrere calderabildende Eruptionen, zuletzt vor etwa 640.000 Jahren, und misst rund 70 × 45 Kilometer. Heute ist sie kein Ort von Lavaströmen, sondern ein Gebiet intensiver hydrothermaler Aktivität, das Forschenden tiefe Einblicke in die Prozesse eines aktiven Supervulkans erlaubt.

Ein besonders spannender Aspekt ist das Verhalten vulkanischer Gase – allen voran das scheinbare Fehlen von Schwefeldioxid-Emissionen (SO₂). In vielen aktiven Vulkanregionen ist SO₂ ein zentrales Überwachungssignal. Vulkane wie der Kīlauea oder der Ätna stoßen täglich große Mengen dieses Gases aus. Die Gaswolken sind mithilfe von Satellitenmessungen oft über Hunderte Kilometer verfolgbar und haben direkte Auswirkungen auf Umwelt und Gesundheit. Yellowstone dagegen zeigt ein anderes Bild: Trotz seines riesigen magmatischen Systems ist dort kaum messbares SO₂ in der Atmosphäre nachweisbar. Stattdessen riecht es aber an vielen Stellen der Thermalgebiete nach faulen Eiern. Dieser charakteristische Geruch wird von Schwefelwasserstoff (H₂S) verursacht.
Der Schlüssel zum Verständnis des im Yellowstone emittierten Gascocktails liegt im Aufbau des tief hinabreichenden Magmasystems: Unter Yellowstone befinden sich zwei Hauptreservoire: eine obere, rhyolithische Magmazone in 4 bis 17 Kilometern Tiefe und ein deutlich größeres, basaltisches Reservoir, das sich zwischen 20 und 50 Kilometern Tiefe erstreckt. Diese Tiefenlage ist entscheidend für den Verbleib des Schwefeldioxids. Während Kohlendioxid (CO₂) bereits in großer Tiefe aus dem Magma entweichen kann – weshalb Yellowstone zu den weltweit stärksten CO₂-Emittenten zählt –, wird SO₂ normalerweise erst sehr oberflächennah freigesetzt. In Yellowstone erreicht es diese flache Zone jedoch kaum, sodass nur vergleichsweise wenig SO₂ aus der Schmelze entweicht.
Das, was an Schwefeldioxid dem Magma entweicht und aufsteigt, trifft auf seinem Weg zur Oberfläche auf eines der größten hydrothermalen Systeme der Erde, das zehntausende heißen Quellen, Geysire und Fumarolen speist. Dort arbeitet eine Art natürliche Chemiefabrik: Das SO₂ löst sich im heißen Wasser und wird chemisch umgewandelt, vor allem in Schwefelwasserstoff (H₂S) und Sulfate. Der typische Geruch nach faulen Eiern in Gebieten wie dem Norris Geyser Basin ist somit kein Zeichen fehlender vulkanischer Aktivität, sondern das Endprodukt dieser Umwandlung und der Grund, warum in den emittierten Gasen kaum Schwefeldioxid nachweisbar ist.
Für die Vulkanüberwachung ist dieses Phänomen von großer Bedeutung. Würde plötzlich SO₂ an der Oberfläche gemessen, wäre das ein ernstes Warnsignal: Es würde auf aufsteigendes Magma und das Austrocknen des hydrothermalen Systems hindeuten. Solange jedoch vor allem CO₂ und H₂S dominieren, gilt Yellowstone trotz seiner Größe als geologisch aktiv, aber derzeit stabil.
Yellowstone zeigt damit eindrucksvoll, dass selbst ein Supervulkan nicht durch spektakuläre Ausbrüche auffallen muss – manchmal erzählen Gase, die man nicht misst, die spannendste Geschichte.






