Seit fast 2 Monaten hält der Gunung Agung die Vulkanwelt in Atem. Zunächst standen die Zeichen auf Sturm: durch den schnellen Anstieg von Seismik und Inflation wurde vorzeitig roter Alarm ausgelöst und ein baldiger Vulkanausbruch vorausgesagt. Doch wieder einmal müssen sich die Vulkanologen eingestehen, dass es sehr schwierig ist exakte Prognosen zu stellen. Trotz aller Fortschritte in der Vulkanologie kann man nur sagen, dass der Vulkan sich auf eine Eruption vorbereitet, aber nicht, ob und wann der Feuerberg tatsächlich eruptieren wird. Zu viele Variablen beeinflussen das Geschehen und unser Wissen über die tatsächlichen Vorgänge im Vulkan sind lückenhaft. Viele Annahmen basieren auf Indizien und daraus entwickelten Modellen. Unser Blick in das Erdinnere erfolgt durch die undurchsichtigen Fenster der Messinstrumente. Doch so viel lässt sich sagen: Magma ist in das Gestein unter dem Vulkan eingedrungen und sammelt sich dort an. Sehr wahrscheinlich ist der Magmanachschub noch nicht ganz zum Erliegen gekommen. Die Treibende Kraft hinter dem Magmaaufstieg war der isostatische Druckausgleich: das geschmolzene Gestein ist weniger Dicht (und somit leichter) als das umgebene Festgestein. Daher steigt es wie eine Luftblase in einem Wasserbecken auf. Ab einer gewissen Tiefe (oft sammelt sich das Magma in 5-8 km Tiefe an) reicht dieser Dichteunterschied allerdings nicht mehr aus, um gegen den Widerstand des festen Gesteins weiter aufzusteigen. Ab dann wird zusätzlicher Gasdruck benötigt, der vom Magma selbst geliefert wird. Wie hoch dieser Gasdruck sein muss hängt auch vom Widerstand des umgebenen Gesteins ab. Dieser scheint im Falle des Gunung Agung recht hoch zu sein. Ein weiterer Faktor ist, wie viel Gas durch Fumarolen und Gesteinsporen entweicht. Doch was passiert nun mit dem Magma im Berg? Kann es noch eruptieren und wie lange besteht die Gefahr eines Ausbruchs? Eine einfache Antwort auf diese Fragen gibt es nicht, wohl aber mehrere Szenarien:
- Das Magma kühlt langsam ab und erstarrt, ohne dass es zu einer Eruption kommt.
- Es strömt weiteres Magma nach bis der Druck so groß ist, dass es eruptiert.
- Das Magma entwickelt sich weiter und es kommt später zu einer Eruption.
Wie eine mögliche Eruption aussehen könnte, hängt nicht nur von der Menge des Magmas ab, sondern auch von ihrem Chemismus. Im Falle von Subduktionszonen-Vulkane ist das primär aufsteigende Magma bereits relativ zähflüssig und reich an flüchtigen Fluiden (Wasser, Gas). In den seltensten Fällen handelt es sich um ein basaltisches Magma. Im günstigsten Fall ist es ein andesitischer Basalt, oder ein Andesit. Letzteres wurde bisher meistens bei den Ausbrüchen des Gunung Agung gefördert. Andesitische Schmelze hat eine mittlere Zähigkeit (Viskosität) und kann als zähflüssige Lavaströme, oder aber auch rein explosiv gefördert werden. Während die Schmelze nun in relativ geringer Tiefe unter dem Berg festsitzt und langsam abkühlt, entstehen feste Minerale, die die Viskosität und Zusammensetzung des verbleibenden Magmas verändern. Der Vulkanologe nennt diesen Reifevorgang magmatische Differentiation. Dabei werden auch weitere Fluide freigesetzt, die für eine Erhöhung des Druckes im Untergrund sorgen können. Dieser Prozess kann Jahrzehnte in Anspruch nehmen, da das Magma im Untergrund gut isoliert ist und nur sehr langsam abkühlt. Am Ende der magmatischen Differentiation steht ein extrem zähes rhyolithisches Magma. Diese Magma-Art enthält viel Gas, da es nur schlecht aus der Restschmelze entweichen kann. Wenn das Gas entweicht, dann erfolgt es meistens explosiv, entsprechend verheerend sind die resultierenden Eruptionen. Rhyolith kann auch effuisv gefördert werden und neigt dann dazu einen Lavadom zu bilden, der den Krater ausfüllt und den Förderschlot verstopft. Erreicht der Dom eine kritische Größe kann er kollabieren, was eine kaskadenartige Reaktion hervorruft. Es entsteht eine hoch aufsteigende Aschewolke und pyroklastische Ströme.
So ein Hergang kann in seinem katastrophalen Verlauf praktisch nur noch durch eine andere Möglichkeit getoppt werden: Nach einiger Zeit steigt frisches Magma aus großer Tiefe auf und vermischt sich mit der rhyolithischen Schmelze. Diese Magma-Mischungsprozesse gehen für gewöhnlich mit sehr starken Eruptionen einher, die nicht selten dazu führen, dass der obere Bereich des Vulkans weggesprengt wird. Ein Beispiel hierfür ist die Krakatau-Eruption von 1883. Doch dies ist ein relativ unwahrscheinliches worst case Szenario.