Türkei: Lithosphärischer Gesteinstropfen verursacht Beckengenese

Konya-Becken in der Türkei könnte sich durch gigantischen Gesteinstropfen der Lithosphäre absenken

Ein erst vor wenigen Jahren entdeckter geologischer Prozess könnte die zunehmende Senkung im zentralanatolischen Plateau in der Türkei erklären. Verantwortlich dafür ist nicht die Plattentektonik, sondern ein riesiger Gesteinstropfen, der in etwa 40 bis 80 Kilometern Tiefe am unteren Rand der Lithosphäre hängt und das Konya-Becken nach unten zieht, wie Geologen um Erstautorin Julia Andersen von der University of Toronto in „Nature Communications“ berichten.

Dies ist nicht das erste Mal, dass ein solcher Lithosphären-Tropfen in dieser Region entdeckt wurde. Eine ähnliche Studie aus dem Jahr 2017 zeigte, dass die Ablösung eines gigantischen Gesteinstropfens für die Hebung der zentralanatolischen Hochebene verantwortlich gewesen sein könnte.

Normalerweise sind plattentektonische Prozesse entlang von Störungszonen und die Drift der Kontinente für die Entstehung von Gebirgen, Hochplateaus oder Grabenbrüchen verantwortlich. Doch einige Landschaftsformen, wie das zentrale Hochplateau der Anden oder die zentralanatolische Hochebene in der Türkei, lassen sich nicht durch diese Prozesse erklären. Beide Regionen wurden angehoben, obwohl keine typischen tektonischen Einflüsse vorliegen.

Das Konya-Becken stellt dabei ein besonderes Rätsel dar: Inmitten des ansteigenden zentralanatolischen Hochplateaus senkt sich die Erdoberfläche in einem Bereich stetig. Satellitendaten zeigen, dass sich die Kruste im Konya-Becken jährlich um etwa 20 Millimeter absenkt, ohne erkennbare seitliche Krustenbewegungen oder plattentektonische Anzeichen.

Auf der Suche nach einer Erklärung nutzten Geologen seismische und gravimetrische Messungen und entdeckten an der Grenze zwischen der Lithosphäre und dem oberen Erdmantel eine Anomalie. Unter der Kruste des Konya-Beckens gibt es eine Zone, in der Erdbebenwellen schneller durch das Gesteinsmaterial verlaufen, was darauf hindeutet, dass es kühler und dichter ist als das umgebende Material. Dieses Material sinkt von der Lithosphäre in den darunterliegenden Mantel ab, ähnlich wie es bereits vor 25 Millionen Jahren in Zentralanatolien geschah. Damals löste sich ein großer Gesteinstropfen von der Lithosphäre, wodurch das Plateau aufgrund isostatischer Prozesse aufstieg. Der jetzt entdeckte Tropfen ist bereits der zweite in dieser Region. Da sich dieser Gesteinstropfen noch nicht abgelöst hat, zieht er die Erdkruste nach unten und verursacht die Senke des Konya-Beckens.

Durch Modellierungsexperimente im Labor konnten die Forscher den Prozess nachstellen: In einem Plexiglastank füllten sie zähflüssiges Polydimethylsiloxan (PDMS) als Modell für den Erdmantel. Darüber legten sie eine Schicht aus mit Ton vermischtem PDMS, die die Lithosphäre darstellte, und eine sandähnliche Schicht als Erdkruste. Ein Klümpchen PDMS diente als Auslöser des Prozesses. Innerhalb von zehn Stunden bildete sich ein erster Tropfen, der in den Mantel absank, gefolgt von einem zweiten Tropfen, der hängenblieb und wuchs. Dieser zweite Tropfen erzeugte eine Senke an der Oberfläche, ähnlich dem realen Konya-Becken.

Da komplexe geodynamische Prozesse in dieser Region stattfinden, sind vulkanische Aktivitäten nicht weit entfernt. Östlich von Konya liegt das quartäre Karapınar-Vulkanfeld, eine vulkanische Landschaft mit erloschenen Schlackenkegeln, Kratern und Lavafeldern. Diese vulkanischen Strukturen sind Teil des anatolischen Vulkanbogens, der durch frühere vulkanische Aktivität in der Region entstanden ist. (Quelle: https://www.nature.com/articles/s41467-024-52126-7)

Türkei: Aktive Magmenkörper im Westen entdeckt

Geoforscher entdecken aktive Magmenkörper in der westtürkischen Region Manisa – Es besteht Eruptionsgefahr

Türkische Forscher unter der Leitung von Prof. Dr. Özgür Karaoğlu, Geologe an der Universität Eskişehir Osmangazi, entdeckten Hinweise auf acht Magmenkörper, die sich im Vulkangebiet Kula-Salihli in der westtürkischen Provinz Manisa befinden. Diese Magmenansammlungen liegen in Tiefen zwischen 5 und 30 Kilometern und sollen Durchmesser von bis zu 30 Kilometern aufweisen. Besonders die oberste Magmakammer beunruhigt die Forscher, da von ihr ein erhebliches Ausbruchsrisiko ausgehen soll.

In Kula befinden sich die jüngsten Vulkane der Türkei, um die sich bereits die alten Griechen Sagen erzählten. Die letzten Eruptionen ereigneten sich vor 4.700 Jahren in einem Gebiet, das als „Verbranntes Land“ bekannt ist. In der Region gibt es zahlreiche Thermalquellen, und das Gebiet ist aufgrund seiner Naturschönheit in einem Geopark geschützt, der als UNESCO-Weltnaturerbe gelistet ist.

Die Magmenkörper wurden mithilfe eines neu installierten seismischen Arrays aufgespürt. Die Geophone wurden im Rahmen eines von TÜBİTAK unterstützten Projekts installiert und von Wissenschaftlern von vier Universitäten unter der Leitung der Technischen Universität Eskişehir Osmangazi betrieben. Für ihre Forschungen nutzten die Geowissenschaftler auch Daten von Stationen des Nationalen Erdbeben-Beobachtungszentrums. In der Pressemeldung zu den Forschungsarbeiten wird nicht näher auf die angewandte Methodik eingegangen, doch ich vermute, dass die Magmenkörper mithilfe der Methode der seismischen Tomografie entdeckt wurden. Unklar bleibt auch, wie hoch der Schmelzanteil in den Magmenkörpern ist.




Die Forschungsarbeiten dauerten mehr als drei Jahre und umfassten ein Gebiet von 10.000 Quadratkilometern.

Aufgrund der Lage und Nähe der Magmenkörper besteht die Möglichkeit, dass sie durch tektonische Bewegungen wieder aktiv werden. Karaoğlu betonte, dass es in der Region aktive Verwerfungslinien gibt, die in Verbindung mit Erdbeben das Risiko eines Vulkanausbruchs erhöhen könnten.

Auch Prof. Dr. Bülent Kaypak, Leiter der Geophysikalischen Abteilung der Universität Ankara, erklärte, dass die Region anfällig für Spannungen ist und das Risiko eines Vulkanausbruchs durch diese geologischen Aktivitäten erhöht wird.

Mexiko: Forscher sagen Vulkanentstehung voraus

Zusammenfassung:

  • Mexikanische Vulkanologen prognostizierten Entstehung eines neuen Vulkans
  • Ort der Vulkanentstehung ist das Vulkanfeld Sierra de Chichinautzin südlich von Mexiko Stadt
  • Hinweise auf Magmatismus im Untergrund liefern diffuse Kohlendioxid-Emissionen aus dem Boden
  • Eruption in 800 bis 1200 Jahren möglich

Mexikanische Vulkanlogen prognostizieren die Entstehung eines neuen Vulkans nahe Mexiko Stadt

Die Erde ist ein äußerst dynamischer Planet, dessen Entwicklung noch lange nicht abgeschlossen ist. Das ist auch wichtig, denn ohne diese anhaltenden geologischen Prozesse wäre die Erde wahrscheinlich ein lebloser Planet wie der Mars. Der Mars war möglicherweise anfangs bewohnbar, verlor jedoch vermutlich seine Atmosphäre und Ozeane, nachdem sein Inneres erstarrte, wodurch plattentektonische Aktivitäten zum Erliegen kamen und das schützende Magnetfeld zusammenbrach. Doch wie so oft liegen Schöpfung und Zerstörung nah beieinander. Daher ist es auf der Erde möglich, dass neue Vulkane entstehen, die auch Zerstörungen anrichten können. Das letzte Mal geschah dies vor 81 Jahren in Mexiko, als ein Bauer auf seinem Feld die Entstehung eines neuen Vulkans erlebte: Der Paricutín entstand im Jahr 1943 und war neun Jahre lang aktiv.

Nun haben Wissenschaftler der Nationalen Autonomen Universität von Mexiko (UNAM) herausgefunden, dass in der Nähe von Mexiko-Stadt die Geburt eines neuen Vulkans bevorstehen könnte. Als wahrscheinlicher Ort wurde das Vulkanfeld der Sierra de Chichinautzin identifiziert, in dem sich zuletzt vor etwa 2.000 Jahren der Schlackenkegel des Vulkans Xitle bildete.

Die Sierra de Chichinautzin ist ein aktives Vulkanfeld, das etwa 70 km südlich von Mexiko-Stadt und in Sichtweite des bekannten Vulkans Popocatépetl liegt. Es erstreckt sich über die Bundesstaaten Mexiko und Morelos und gehört zum Transmexikanischen Vulkangürtel. Das Gebiet enthält zahlreiche Vulkane, die überwiegend monogenetische Schlackenkegel sind, also Vulkane, die nur einmal in ihrem Dasein ausbrechen.

Die Geoforscher Hugo Delgado und Roberto Villalpando haben eine Methode entwickelt, um den wahrscheinlichen Standort des nächsten Vulkanausbruchs im Vulkanfeld vorherzusagen. Diese Methode basiert auf der Überwachung diffuser Kohlendioxid-Emissionen aus dem Boden, die auf aufsteigendes Magma hinweisen, das dabei ist in die Erdkruste einzudringen. Seit 2008 überwachen die Forscher diese Emissionen in den Bezirken Tlalpan, Xochimilco und Milpa Alta. So konnten sie den möglichen Entstehungsort des nächsten Vulkans eingrenzen. Allerdings ist die Region besiedelt, da sie zu den Vororten von Mexiko-Stadt gehört. Diese Nachricht hat bei der Bevölkerung Besorgnis über einen möglichen Vulkanausbruch ausgelöst. Doch die Wissenschaftler geben Entwarnung: Ihren Berechnungen zufolge wird der neue Schlackenkegel erst in 800 bis 1.200 Jahren entstehen. Es bleibt also genügend Zeit, um entsprechende Vorsichtsmaßnahmen zu ergreifen.

Da zu Beginn der Mars erwähnt wurde, sei hier noch eine weitere Studie erwähnt: Forscher der niederländischen Universität Delft haben aufgrund neuer Messdaten herausgefunden, dass der größte Vulkan des Sonnensystems, Olympus Mons, möglicherweise noch aktiv ist und in Zukunft wieder ausbrechen könnte. Sie entdeckten unter dem Vulkan eine Region geringerer Dichte, was auf ein großes Magmenreservoir hindeutet. Wie dieses Magma jedoch entstehen konnte, wenn die planetare Dynamik gegen Null geht, bleibt rätselhaft.

Island: Magma aus verschiedenen Quellen

Ausbruch auf der Sundhúnkur-Spalte. © Marc Szeglat

Neue Lavaprobenanalysen der Sundhnúkur-Eruptionen verblüffen Forscher – Magma stammt aus unterschiedlichen Quellen

Eine neue Studie, die gestern im Fachmagazin Science veröffentlicht wurde und über die der isländische Fernsehsender RUV berichtete, brachte Überraschendes zutage: Das Magma, aus dem die Lava der verschiedenen Ausbrüche der Sundhnúkur-Kraterreihe seit Dezember letzten Jahres stammt, kommt nicht aus einer einzigen Quelle, sondern aus mehreren verschiedenen. Dieser Umstand erfordert eine Überarbeitung des bisherigen Modells der Magmaspeicher unter Svartsengi und Fagradalsfjall. Gleichzeitig erschwert die hohe Variabilität der Schmelzzusammensetzung die Vorhersage zukünftiger Eruptionen auf der Reykjanes-Halbinsel.

An der Studie arbeiteten 20 Wissenschaftler aus verschiedenen Institutionen unter der Leitung des Geowissenschaftlichen Instituts der Universität Reykjavik zusammen. Im Rahmen der Untersuchung entdeckten sie, dass die Lava der Eruptionen nicht aus einer einzigen Magmaquelle stammt, sondern dass verschiedene Magmalinsen in der Erdkruste miteinander interagieren und so die Vulkanausbrüche auslösen.

Die Forscher untersuchten Lavaproben, die bei den ersten vier Eruptionen der Serie an verschiedenen Stellen des Lavafelds gesammelt wurden. Während sich die chemische Schmelzzusammensetzung des Basaltmagmas innerhalb einer Eruptionsphase nur wenig veränderte, zeigten sich zwischen den einzelnen Ausbrüchen deutliche Unterschiede. Die Forscher sprechen nun nicht mehr von einem einzelnen Magmenkörper, in dem sich das Magma ansammelt, sondern von einer Magmendomäne, die sich in mittleren Tiefen der Erdkruste gebildet hat.

Die unerwartete chemische Vielfalt der Schmelze macht die Vorhersage zukünftiger Eruptionen komplizierter. Zunächst war man von einer gleichmäßigen chemischen Zusammensetzung der Lava ausgegangen, doch die Ergebnisse der Studie zeigen eine viel komplexere Dynamik im Magmasystem.

Magmadomäne unter Svartsengi. © Simon Matthews, University of Iceland.

Ein in der Studie veröffentlichtes Bild veranschaulicht diese Komplexität anhand eines Querschnitts von der Erdoberfläche bis in den Erdmantel. Es wird deutlich, dass das Magma im Fagradalsfjall aus der Grenzschicht zwischen Kruste und Mantel aufgestiegen ist, während das Magma in der Sundhnúkur-Kraterreihe überraschend vielfältig war, obwohl es aus der gleichen Magmakammer stammt. Die Ergebnisse tragen nicht nur zum Verständnis isländischer Vulkane bei, sondern liefern auch wichtige Hinweise für das globale Verständnis von Vulkansystemen. (Quellen: Science/RUV)

Neuseeländische Forscher entwickeln neues Prognosemodell

Neues Prognosemodell soll Verbreitung von Aschewolken schneller vorhersagen und alarmieren

Ein internationales Forschungsteam unter Leitung des neuseeländischen GNS Science arbeiten an einem neuen Projekt, um den Ascheregen bei einem zukünftigen Vulkanausbruch auf der Nordinsel von Neuseeland präziser und schneller vorhersagen zu können. Ein großer Vulkanausbruch stellt eine der größten Naturgefahren des pazifischen Inselstaates dar, obwohl schwere Schäden durch Ascheregen als eher unwahrscheinlich gelten. Forscher warnen jedoch, dass selbst bei kleineren Ausbrüchen Tausende von Gebäuden von Ascheregen betroffen sein könnten, und dass selbst geringe Ascheablagerungen Wasserversorgungen kontaminieren, Abwassersysteme verstopfen und landwirtschaftliche Flächen sowie Stromnetze beeinträchtigen könnten.

Das Projekt zielt darauf ab, ein Echtzeit-Modell zu entwickeln, das vorhersagt, wie sich Asche nach einem Ausbruch verteilen wird. Es kombiniert wissenschaftliche Daten, Satellitenbilder und Informationen aus sozialen Medien, um die betroffenen Gebiete und potenzielle Schäden schneller zu identifizieren. Dadurch können Notfallmaßnahmen effizienter koordiniert und Ressourcen gezielt eingesetzt werden.

Der letzte größere Aschefall auf der neuseeländischen Nordinsel ereignete sich im Jahr 2012, als der Tongariro ausbrach und die Umgebung mit Asche bedeckte. Forscher betonen, dass ähnliche oder größere Ausbrüche in der Zukunft unvermeidlich sind. Vulkane wie Ruapehu und Ngāuruhoe können Ascheablagerungen von bis zu 50 Millimetern Mächtigkeit verursachen, was ausreicht, um Dächer zu beschädigen und landwirtschaftliche Flächen zu zerstören. Dickere Ascheschichten könnten sogar Dächer einstürzen lassen und Bäume entlauben.

Glücklicherweise liegen viele dieser Vulkane in Nationalparks, wo die Bebauung begrenzt ist, was das Risiko schwerer Schäden reduziert. Trotzdem könnten seltener auftretende starke Eruptionen erhebliche Auswirkungen haben.

Das Forschungsteam von GNS Science, der University of Canterbury und der Nanyang Technological University in Singapur plant, das Prognosemodell bis Ende nächsten Jahres fertigzustellen. Langfristig hoffen die Wissenschaftler, die Methode auch auf andere Naturgefahren anwenden zu können, um Vorhersagen und Schutzmaßnahmen weiter zu verbessern.

Bei Vulkanasche handelt es sich um fein fragmentierte Lava mit einer Korngröße von bis zu 2 mm. Sie entsteht, wenn im Vulkanschlot erstarrte Lava durch Explosionen stark zerkleinert und in Wolkenform ausgestoßen wird. Vulkanasche hat nichts mit flockenförmiger Asche eines Feuers zu tun, sondern ähnelt Sand. Kieselsteingroße Partikel werden Lapilli genannt.

In Neuseeland gibt es 12 aktive Vulkane, die kontinuierlich überwacht werden. Die meisten dieser Vulkane befinden sich auf der Nordinsel und gehören zur sogenannten Taupō Volcanic Zone. Beim Taupō handelt es sich um einen großen Calderavulkan, der in der Vergangenheit mehrere extrem starke Eruptionen verursachte. Aktuell in Eruption befindet sich der Whakaari auf  White Island. Hier gab es Anfang September mehrere kleine Ascheeruptionen.

Pompeji: Ausgrabungen fördern 2 Skelette zutage

Funde von 2 Skeletten in Pompeji – Goldschatz bei einem der Opfer entdeckt

Ein schreckliches Schicksal erlitten zwei Menschen, die im antiken Pompeji infolge des Vulkanausbruchs des Vesuvs im Jahre 79 n. Chr. starben. Ihre Skelette wurden nun von Archäologen ausgegraben, die in einem Haus der Insula 10 der Regio IX arbeiteten, wo in den letzten Monaten und Jahren mehrere sensationelle Funde gemacht wurden. Jeder dieser Funde brachte den Forschern neue Erkenntnisse über das Leben und Sterben in der römischen Stadt. Einer dieser Funde machte sogar eine Neudatierung des Untergangs Pompejis notwendig. Es handelte sich um eine Inschrift, die vermuten lässt, dass das bisherige Untergangsdatum falsch war. Daher verschob man die Katastrophe um fast zwei Monate auf den 17. Oktober 79. Das bisher gültige Datum könnte durch einen Übersetzungsfehler entstanden sein, der bereits im Mittelalter begangen wurde.

Der aktuelle Fund enthüllte die Skelette eines Mannes und einer Frau, die möglicherweise ein Paar waren und in einem provisorischen Schlafzimmer im Servicebereich des Hauses Schutz vor dem Vulkanausbruch gesucht und gefunden hatten. Bei dem Haus handelt es sich um das gleiche Gebäude, in dem im Frühjahr bereits der Blaue Schrein entdeckt wurde. Das Gebäude wurde zum Zeitpunkt der Katastrophe renoviert, vielleicht um frühere Erdbebenschäden auszubessern. Das Schlafgemach lag in einem gut abgeschotteten Teil des Gebäudes, war offenbar fensterlos und hatte eine stabile Decke, die durch der Ascheablagerungen nicht eingestürzt war. Der Raum war frei von Bimssteinen, und offenbar waren keine vulkanischen Ablagerungen während der Eruption eingedrungen, obgleich der Raum später mit Sedimenten gefüllt wurde. Von den direkten Folgen des Ausbruchs blieb jedoch der benachbarte Raum nicht verschont. Dieser war mit Bims verfüllt, und die Ablagerungen blockierten die Tür, sodass die beiden Schutzsuchenden zwar den Ausbruch zunächst überlebten, aber in dem Schlafzimmer gefangen waren und wahrscheinlich erstickten oder verdursteten. Zum Zeitpunkt ihres Todes lag die Frau halb in ihrem Bett, zusammen mit einem kleinen Schatz aus Gold-, Silber- und Bronzemünzen sowie goldenen Ohrringen, die mit Perlen verziert waren. Der Mann lag am Fußende des Bettes auf dem Boden. Weitere Möbelstücke im Raum waren ein Tisch mit Marmorplatte und die Überreste einer Truhe. Offenbar waren es sehr wohlhabende Leute gewesen. Doch ihr Reichtum konnte sie nicht vor dem Untergang bewahren.

Im Juli machte eine Meldung die Runde, dass neue Hinweise darauf gefunden wurden, dass während der Eruption starke Erdbeben stattfanden, die zu einem Teil der Zerstörungen Pompejis beitrugen. Bei diesen Hinweisen handelte es sich um forensische Untersuchungen von zwei männlichen Skeletten, die bereits vor einiger Zeit im Haus der „keuschen Liebenden“ entdeckt wurden. Die Untersuchungen ergaben, dass sie nicht Opfer des Vulkanausbruchs wurden, sondern von einer umgestürzten Wand erschlagen wurden, die infolge von Erdbeben kollabierte. Zum Kollaps kam es vor der Serie alles zerstörender pyroklastischer Ströme, die einen Großteil der Todesopfer verursachten. In Pompeji starben mindestens 2000 Menschen, was 10 Prozent der damaligen Bevölkerung ausmacht.

Erster langer Bohrkern von Mantelgestein geborgen

Forscher erbohrten 1268 m langen Bohrkern aus Mantelgestein des Atlantischen Rückens – Rückschlüsse über Magmenentstehung möglich

Der Mensch hat es bereits vor fast 60 Jahren geschafft, auf dem Mond zu landen, Gesteinsproben vom Mars zu untersuchen und die Tiefen des Weltalls mittels Ferndiagnostik zu erforschen. Doch das, was in wenigen Kilometern Tiefe unter unseren Füßen vorgeht, ist weitestgehend unbekannt: Über die komplexen Prozesse im Erdinneren verfügen wir nur über vergleichsweise wenige Daten und noch weniger Proben, die im Labor untersucht werden können. Dabei ist ein Verständnis dieser Prozesse von enormer Bedeutung, denn hier liegt der Schlüssel zum Verständnis verschiedener Stoffkreisläufe, der Plattentektonik, der Entstehung des Erdmagnetfelds sowie des Wissens um Erdbeben und Vulkanausbrüche verborgen. Eine groß angelegte Forschungsaktion förderte im Frühjahr 2023 den längsten zusammenhängenden Bohrkern von Mantelgestein zutage, der helfen könnte, die Vorgänge im Erdinneren besser zu verstehen.

Der Bohrkern ist 1.268 Meter lang und lagert nun in zahlreichen Kisten verpackt im Archiv der Cardiff University in Wales. Er wurde mit Hilfe des Meeresbohrschiffs JOIDES Resolution am Atlantis-Massiv des Mittelatlantischen Rückens geborgen. Hier ist die ozeanische Kruste nur wenige Kilometer mächtig, was das Projekt erleichterte. An dem Projekt mit der Bezeichnung „Expedition 399“ waren mehr als 30 Forscher aus verschiedenen Ländern beteiligt. Die Forschungsarbeiten sind noch lange nicht abgeschlossen, doch die Universität Cardiff veröffentlichte eine Pressemeldung, in der erste Ergebnisse vorgestellt wurden.

Das Gestein des Bohrkerns besteht überwiegend aus serpentinisiertem Peridotit. Dieses Mantelgestein enthält vor allem die Mineralien Olivin, Pyroxen und Plagioklas. Die Forscher waren überrascht über den geringen Anteil an Pyroxen, der in anderen Mantelgesteinsproben weitaus häufiger vorkommt. Im Bohrkern liegt der Pyroxen-Anteil bei weniger als 10 Prozent. Studienautor C. Johan Lissenberg erklärt, dass andere Mantelgesteinsproben entweder als Einschlüsse in Lava vorliegen, die aus Vulkanen eruptiert wurde, oder vom Meeresboden geschürft wurden. Bei diesen Proben könnte das ursprüngliche Mantelmaterial jedoch bereits chemisch umgewandelt worden sein. Zudem zeigt die Struktur des Bohrkerns, dass frühere Schmelzbewegungen im Mantelgestein zum Teil eine diagonale Bewegungsrichtung aufwiesen.

Die Ergebnisse deuten außerdem auf eine höhere Schmelzmenge im Mantelgestein hin als bisher angenommen, was wichtige Implikationen für das Verständnis der Magmaentstehung und des Vulkanismus hat. Die Untersuchung der Mantelgesteine ermöglicht es auch, den Transport von Magma und dessen Einfluss auf Vulkane, insbesondere solche auf dem Meeresboden, besser zu verstehen.

Ein weiterer Aspekt der Forschung befasst sich mit der Reaktion von Olivin, einem häufigen Mineral im Mantel, mit Meerwasser, wodurch Wasserstoff und andere lebenswichtige Moleküle produziert werden. Dies könnte ein Schlüsselfaktor bei der Entstehung des Lebens auf der Erde gewesen sein. Die Erkenntnisse aus den geborgenen Gesteinen bieten wertvolle Einblicke in die chemischen und physikalischen Bedingungen der frühen Erde und werden weiterhin intensiv untersucht, um eine Vielzahl von geowissenschaftlichen Fragen zu klären.

Island: Studie zur Grabenbildung am 10. November

Grabenbildung vom 10. November gut dokumentiert – einmalige Gelegenheit für die Forschung

Am 10. November 2023 wurden Geowissenschaftler unterschiedlicher Disziplinen Zeugen einer Grabenbildung, die sie in noch nie dagewesener Genauigkeit dokumentierten. Eigentlich erwarteten sie einen Vulkanausbruch, denn über Wochen hatte sich Magma im Untergrund angesammelt. Doch was sie dann erlebten, überstieg ihre Erwartungen und stellte gleichzeitig für die Bewohner von Grindavík eine Katastrophe dar.

Auch Vnet berichtete in Echtzeit von den Geschehnissen, deren offensichtliche Symptome in Form von Erdbeben auftraten, von denen einige Magnituden im Fünferbereich erreichten. In sozialen Medien berichteten Anwohner von Grindavík von Rissen, die sich in Straßen und Häusern auftaten. Zu diesem Zeitpunkt dachte man noch, diese Risse seien nur Folgen der Erdbeben. Doch wie sich später zeigte, gingen Erdbeben und Rissbildungen mit massiven Erdbewegungen einher, die in dieser Form nur selten wissenschaftlich dokumentiert worden waren. Als klar wurde, dass es sich um einen außergewöhnlich starken seismischen Schwarm handelte, wurden Grindavík und das Geothermiekraftwerk evakuiert.

Erst nach und nach wurde klar, welche massiven Erdbewegungen stattgefunden hatten, und die Forscher staunten nicht schlecht, als sie feststellten, dass man Zeuge einer Grabenbildung geworden war. Sie begannen mit der Auswertung der Daten und veröffentlichten nun eine Studie zu dem Ereignis, an deren Erstellung ein internationales Team beteiligt war. Als Hauptautoren gelten Gregory P. De Pascale und Tomáš J. Fischer. Zudem arbeiteten viele Forscher des IMO und der Universität Reykjavík an diesem Papier mit.

Es wurden sämtliche Daten des Ereignisses ausgewertet, die zur Verfügung standen. Die Daten stammten von seismischen Stationen, Satellitenradar (InSAR), GPS, bodengestützten Geräten sowie drohnengestützten Lidar- und Bildaufnahmen. Zudem wurden präzise Landvermessungen durchgeführt und auch Drohnen zur Erkundung und Vermessung eingesetzt. Bald stand fest, dass sich nicht nur ein paar Risse geöffnet hatten, sondern dass man Zeuge einer Grabenbildung geworden war. Tatsächlich bildeten sich zwei parallel verlaufende Gräben, die sich entlang von Störungszonen absenkten, während der Bereich zwischen den Tälern angehoben wurde und nun einen sogenannten Horst bildet. Solche Horst-und-Graben-Strukturen findet man häufiger entlang von kontinentalen Plattengrenzen. Trotz der Magmaansammlung im Untergrund gehen die Forscher davon aus, dass die Schmelze bei der Grabenbildung eine untergeordnete Rolle spielte und vermuten tektonische Kräfte hinter dem Ereignis. Nichtsdestotrotz kam es parallel zur Grabenbildung zur Intrusion eines magmatischen Gangs. Wahrscheinlich drang das Magma in einen neu gebildeten Riss ein.

Die Untersuchungen ergaben, dass die Gräben größtenteils innerhalb weniger Stunden entstanden, zeitgleich mit der seismischen Aktivität. Das neue System umfasst zwei Täler, fünf Verwerfungen und etwa 12 Spalten, mit einer vertikalen Verschiebung von fast 3 Metern und einer Breite von etwa 4,5 Kilometern – deutlich breiter als die meisten anderen bekannten Grabenstrukturen.

Insgesamt liefert die Untersuchung neue Erkenntnisse über die Entstehung von Gräben und könnte das Verständnis ihrer Bildung und Funktion an ähnlichen Orten auf der Erde und auf anderen Planeten verbessern. (Quelle: https://doi.org/10.1029/2024GL110150)

Popocatepetl: Seismische Tomografie enthüllt Magmenkörper

Neues Forschungsprojekt enthüllte innere Struktur des Popocatepelt mit Hilfe der seismischen Tomografie

Einem Forscherteam der Nationalen Autonomen Universität von Mexiko (UNAM) gelang es erstmals, faszinierende Bilder der inneren Struktur des Vulkans Popocatépetl anzufertigen. Diese Aufnahmen reichen bis zu 10 Kilometer Tiefe unter dem Vulkan und enthüllen bisher unbekannte Details aus dem Inneren des Feuerbergs.

Der Popocatépetl ist ein großer Vulkan und hat einen Durchmesser von 25 Kilometern. Sein Gipfel wird von einem elliptischen Krater dominiert, der 600 mal 400 Meter misst. Im Krater gibt es einen Pit, der ca. 110 m tief ist. Der Vulkan ist für seine explosiven Eruptionen berüchtigt und erzeugt täglich Ascheexhalationen.

Aufgrund seiner lang anhaltenden Tätigkeit und seines großen Gefahrenpotenzials ist der Popocatépetl Gegenstand öffentlichen Interesses und wissenschaftlicher Forschungen. Um die Geheimnisse dieses Vulkans zu lüften, hat die UNAM ein seismisches Netzwerk um den Vulkan installiert, das ähnlich wie ein Röntgengerät funktioniert. Nur anstelle von Röntgenstrahlung werden seismische Wellen natürlicher Erdbeben benutzt, um ein dreidimensionales Bild des Untergrunds zu generieren. Mit dieser Methode konnten Bilder des Inneren des Vulkans mit beispielloser Auflösung erstellt werden, die die innere Struktur des Vulkans zeigen. Die Farben in diesen Bildern repräsentieren Anomalien in der Geschwindigkeit der seismischen Wellen, was Rückschlüsse auf die Materialzusammensetzung und die Bewegungswege des vulkanischen Materials im Untergrun erlaubt.

Die Forscher kamen zu dem Schluss, dass es nicht nur einen großen Magmenkörper unter dem Vulkan gibt, sondern dass sich die Schmelze in einer komplexen Struktur mehrerer Reservoris auf unterschiedlichen Ebenen verteilt. Das Fördersystem besteht aus einem Leitungssystem, das sich zwischen Brüchen im Untergrund bildete.

Um diese detaillierten Bilder zu erstellen, verwendeten die Wissenschaftler zwei Methoden: die seismische Interferometrie, die seismisches Umgebungsrauschen nutzt, und die Überwachung der Signale kleiner Erschütterungen im Vulkaninneren mithilfe künstlicher Intelligenz. Die KI half u.a. dabei, schwache seismische Signale zu identifizieren, die sonst nicht erkannt worden wären, und wertete eine Vielzahl an Signalen aus. Somit war man in der Lage, viele Details zu visualisieren, die sonst verborgen geblieben wären.

Diese Forschungsarbeit ermöglicht es, das Verhalten des Vulkans besser zu verstehen und künftige vulkanische Aktivitäten besser vorherzusagen.

Übrigens ist der Popocatepetl in diesen Tagen nur vergleichsweise schwach aktiv. Es kommt täglich zu mehreren Ascheexhalationen, aber stärkere Explosionen treten nur sporadisch auf. Der tremor ist vergleichsweise gering. (Quelle: UNAM)