Campi Flegrei: Studie untersucht tieferen Untergrund

Der Monte Nuovo (rechts) ist die jüngste vulkanische Manifestation in den Campi Flegrei. Links im Bild lassen sich Unterwasserruinen erahnen. © Marc Szeglat

Forscher durchleuchten Untergrund der Campi Flegrei bis in 20 Kilometer Tiefe und entdecken magmatische Strukturen

Die Campi Flegrei beschäftigen uns seit Jahren und stehen wegen einer ungewöhnlich langen Phase des Bradyseismos genannten Phänomens oft in den Schlagzeilen. Es kommt zu einer starken Bodenhebung, die einhergeht mit intensiver Erdbebentätigkeit und dem massiven Ausstoß magmatischer Gase. Bisherige Untersuchungen des Untergrunds reichten meistens nur wenige Kilometer in die Tiefe hinab, nun lieferte ein neuer Forschungsansatz ein deutlich weitreichenderes Bild, das bisherige Vermutungen und Modelle zu bestätigen scheint.




Ein internationales Forschungsteam hat mithilfe einer neuartigen 3D-Magnetotellurik-Tomographie erstmals das magmatische System unter der Campi-Flegrei-Caldera bei Neapel untersucht und ist mit seinen Bildgebungsverfahren bis in eine Tiefe von 20 Kilometern vorgedrungen – deutlich tiefer als es bisher möglich war. Die in der Fachzeitschrift Nature Communications Earth & Environment veröffentlichte Studie wurde vom italienischen Institut für Geophysik und Vulkanologie (INGV) in Zusammenarbeit mit der Universität Oxford, dem Trinity College Dublin und der Universität München durchgeführt. Erstautor der Studie ist Roberto Isaia.

Die Campi Flegrei gelten als eines der gefährlichsten Vulkansysteme Europas. Ein genaues Verständnis ihrer inneren Struktur ist daher entscheidend für die Beurteilung vulkanischer Risiken. Die neue Untersuchung liefert ein detailliertes Bild des gesamten Caldera-Komplexes, einschließlich seines untermeerischen Teils, und erlaubt erstmals Einblicke in tiefere magmatische Prozesse.

Zur Erfassung der inneren Strukturen kam die Magnetotellurik zum Einsatz – eine geophysikalische Methode, die natürliche Schwankungen elektrischer und magnetischer Felder misst. Diese erlaubt Rückschlüsse auf den elektrischen Widerstand des Untergrunds, ein Parameter, der stark vom Vorhandensein magmatischer oder hydrothermaler Fluide beeinflusst wird.

Die Analyse der gewonnenen Daten ermöglichte es dem Team, Zonen mit teilweise geschmolzenem Gestein sowie mögliche Förderkanäle für Magma und Fluide zu identifizieren. Solche Strukturen spielen eine zentrale Rolle im Verständnis vulkanischer Aktivität und ihrer potenziellen Gefährdung.

Es wurden u.a. unterirdische Strukturen identifiziert, die vermutlich eine entscheidende Rolle bei der Migration von Magma und Fluiden während früherer Unruhezustände gespielt haben und bei künftigen vulkanischen Aktivitäten erneut von Bedeutung sein könnten. Natürlich spielen diese Strukturen auch bei der aktuellen Unruhephase eine Rolle.

Modell des Krustenaufbaus der Campi Flegrei. © nature.com / Roberto Isaia

Das geophysikalische Modell beschreibt ein dreistufiges Krustensystem:

  • In Tiefen von über 8 km liegt eine abgegrenzte Zone mit einem kristallinen Brei, in dem teilweise geschmolzenes Magma gespeichert ist.
  • Zwischen 3 und 8 km Tiefe befinden sich kristallisierte Magmalinsen sowie kanalartige Strukturen, durch die Fluide und Magma entlang geologischer Bruchzonen aufsteigen könnten. Die Magmalinsen sind allerdings so klein, dass sie unter der Auflösungsschwelle der angewandten Methoden liegen.
  • In weniger als 3 km Tiefe findet sich eine Zone mit verändertem Caldera-Füllmaterial, das mit hydrothermalen Fluiden, Salzlösungen und alten magmatischen Intrusionen interagiert.
  • Zur Überfläche hin ist die Caldera mit einer tonartigen Deckschicht versiegelt

Diese Struktur deutet auf ein transkrustales Leitungssystem hin, in dem tiefliegende Magmazonen über vertikale Kanäle mit dem flachen hydrothermalen System verbunden sind. Da erstmals die Struktur des Magmenkörpers zwischen 8 und 20 Kilometer Tiefe erfasst wurde, lässt sich dessen Volumen nun besser abschätzen. Unklar scheint aber noch zu sein, wie tief er hinab reicht.

Die Ergebnisse sind entscheidend für das Verständnis vulkanischer Prozesse und verbessern die Interpretation laufender Überwachungsdaten. Das Modell liefert wertvolle Anhaltspunkte für die Optimierung von Messnetzwerken und kann helfen, frühe Anzeichen möglicher Eruptionsprozesse – etwa durch Bodenhebung, Entgasung oder seismische Aktivität – besser zu deuten. Damit trägt die Studie zur Verbesserung der Risikoeinschätzung und der Überwachung des Campi-Flegrei-Systems bei.

Die Studie war auch technisch anspruchsvoll, da die Campi-Flegrei-Region stark besiedelt ist und elektromagnetischen Störungen durch menschliche Aktivitäten ausgesetzt ist. Durch speziell entwickelte Messprotokolle konnte dennoch eine hohe Datenqualität gewährleistet werden.

Angesichts der aktuellen Unruhen in der Region liefern die Forschungsergebnisse wichtige Grundlagen für die Vulkanüberwachung und das Risikomanagement. Sie tragen dazu bei, präzisere Vorhersagemodelle zu entwickeln und die Sicherheit der Bevölkerung in einem potenziell gefährdeten Gebiet zu erhöhen. (Quellen: nature.com: https://doi.org/10.1038/s43247-025-02185-5; Pressemeldung INGV)

Aktuelle Entwicklungen in den Campi Flegrei

Übrigens bewegte sich die Seismizität der Campi Flegrei in den letzten Tagen auf normalem Niveau. Das stärkste Beben hatte eine Magnitude von 2,0. Im neusten Wochenbulletin der INGV heißt es, dass die Bodenhebung von 30 mm pro Monat auf 20 mm pro Monat zurückgegangen sei. Damit liegt man aber immer noch auf überdurchschnittlichem Niveau.