Campi Flegrei von Erdbeben M 3,0 erschüttert

Fangopool im Solfatara-Krater der Campi Flegrei. © Marc Szeglat

Erdbeben der Magnitude 3,0 erschütterte Campi Flegrei – Erschütterungen im gesamten Gebiet spürbar gewesen

Datum 13.01.25 | Zeit: 16:53:50 UTC | Koordinaten: 31.860 ; 131.519 | Tiefe: 1,9 km | Mb 3,0

Der süditalienische Calderavulkan Campi Flegrei wurde gestern Nachmittag erneut von einem weithin spürbaren Erdbeben erschüttert. Es hatte eine Magnitude von 3,0 und ereignete sich um 16:53:50 Uhr UTC bei den Koordinaten 40,8290; 14,1328. Das Epizentrum manifestierte sich knapp 100 Meter westlich des Solfatara-Kraters, in einem bebauten Gebiet entlang der Via Solfatara. Das Hypozentrum wurde in einer Tiefe von 1,9 Kilometern lokalisiert. Dieser stärkste Erdstoß des Jahres war im gesamten Gebiet der Campi Flegrei deutlich spürbar und sorgte bei den Anwohnern für Aufregung.

Interessanterweise handelte es sich um ein Dreifachbeben: Mit wenigen Sekunden Abstand ereigneten sich zwei weitere Erschütterungen im gleichen Areal. Diese erreichten Magnituden von 1,6 und 1,7 und wurden Berichten zufolge ebenfalls von einigen Bewohnern wahrgenommen. Das schwächste der drei Beben war der erste Stoß der Serie. Insgesamt wurden seit gestern 16 Beben in der Region registriert, sodass man hier von einem kleinen Schwarmbeben sprechen kann. Die Mehrheit dieser Beben trat in geringen Tiefen im Areal der Solfatara auf.




Die aktuelle Erdbebentätigkeit steht im Einklang mit der generellen Entwicklung der Campi Flegrei. Im Januar wurden bislang 134 Erschütterungen detektiert, was die Aktivität im Vergleich zum Vormonat als stabil erscheinen lässt. Die anhaltende seismische Aktivität spiegelt sich auch in der weiteren Druckbeaufschlagung des Hydrothermalsystems wider. Hierbei spielen sowohl geophysikalische als auch geochemische Parameter eine Rolle. So schwankte die Temperatur der austretenden Gase an der Pisciarelli-Hauptfumarole, bedingt durch Niederschläge, zwischen 94 und 97 Grad Celsius. Lag die meiste Zeit aber am oberen Ende des Schwankungsbereichs. Zudem wurden große Mengen Kohlenstoffmonoxid und Kohlenstoffdioxid freigesetzt. Im Dezember erreichte der CO₂-Ausstoß etwa 3.000 Tonnen pro Tag, was dem Ausstoß eines aktiven Vulkans entspricht.

Anhand der Ausgestoßenen Kohlenmonoxid und Kohlendioxid-Menge gehen die INGV-Forscher davon aus, dass die Fluide im Hydrothermalsystem 250 Grad heiß sind. Zum Anfang des Jahrtausends soll die Temperatur bei 215 Grad gelegen haben. Seitdem stieg die Temperatur des Hydrothermalsystems um 35 Grad.

Die Bodenhebung, gemessen an der RITE-Station, beträgt aktuell etwa 10 mm pro Monat. Seit Beginn der Hebungsphase im Jahr 2005 hob sich der Boden der Campi Flegrei um beeindruckende 1.370 mm; allein 2024 waren es 265 mm. Die anhaltende Hebung deutet auf eine mögliche Magmenintrusion in 4 bis 5 Kilometern Tiefe hin, die sich während der beschleunigten Hebungsphase im letzten Sommer verstärkt haben könnte.

Yellowstone-Caldera: Magma verlagert sich nordostwärts

Kalksinter-Terrassen der Mammoth Hot Springs im Yellowstone Nationalpark. ©  Marc Szeglat

Neue Studie enthüllt eine nordostwärts gerichtete Verlagerung der Magmenreservoirs unter dem Yellowstone-Vulkan

Die Yellowstone-Caldera ist in den letzten Jahren ein wenig aus dem Fokus der Medien verschwunden, obgleich sie weiterhin ein spannende Forschungsobjekt bleibt. Der US-amerikanische Yellowstone Nationalpark beherbergt eines der größten und aktivsten Vulkansysteme der Erde. Es besteht aus 3 sich überlappenden Calderen, und wird durch den sogenannten Yellowstone-Hotspot gespeist – eine Zone, in der heißes Magma aus dem Erdmantel aufsteigt und die Erdkruste durchdringt. Die Calderen entstanden durch mehrere massive Ausbrüche (sogenannte Supervukaneruptionen), bei denen große Mengen Tephra freigesetzt wurden. Durch die Entleerung des Magmenreservoirs sackte der Boden darüber ab und bildete die großen Depressionen der Calderen. Diese Supervulkan-Ereignisse, die vor etwa 2,1 Millionen, 1,3 Millionen und 640.000 Jahren stattfanden, haben Tausende Kubikkilometer Lava und Asche freigesetzt und dabei das lokale und globale Klima stark beeinflusst.




Zusätzlich zu diesen drei großen Supervulkaneruptionen gab es zahlreiche kleinere Ausbrüche, die weniger explosiv, aber dennoch bedeutend waren. Diese Ereignisse wurden durch rhyolithisches Magma verursacht, das in der mittleren bis oberen Erdkruste gespeichert ist. Rhyolithisches Magma ist dickflüssig und silikatreich, was es anfällig für explosive Ausbrüche macht. Gleichzeitig steigt Basaltmagma aus dem Mantel auf, das dünnflüssiger ist und durch seinen hohen Eisen- und Magnesiumgehalt Wärme liefert, die das rhyolithische Magma aufrechterhält.

Neueste Untersuchungen des United States Geological Survey (USGS) legen nahe, dass sich die magmatische Aktivität unter der Yellowstone-Caldera in nordöstliche Richtung verlagert. Mithilfe einer elektromagnetischen Untersuchungsmethode, die Magnetotellurik genannt wird, die Schwankungen im Erdmagnetfeld misst, konnten die Forscher die Struktur der Kruste und die Verteilung des Magmas unter der Caldera präzise modellieren.

Die Studie, die unter Leitung von Seismologin Ninfa Bennington durchgeführt wurde, identifizierte mindestens sieben Bereiche mit erhöhtem Magmagehalt unter der Caldera. Diese Regionen reichen von tiefen Zonen, etwa 47 Kilometer unter der Oberfläche, bis in flachere Bereiche, die sich nur 4 Kilometer unter der Erdoberfläche befinden. Einige dieser Magmenkörper sind miteinander verbunden und tauschen Wärme und Material aus. Besonders auffällig ist ein großes Magmareservoir unter dem nordöstlichen Bereich der Caldera. Dieses enthält schätzungsweise 440 Kubikkilometer geschmolzenes Gestein – ein Volumen, das dem des Mesa-Falls-Ausbruchs vor etwa 1,3 Millionen Jahren entspricht, dem zweitjüngsten calderabildenden Ereignis in Yellowstone.

Gleichzeitig deutet die Studie darauf hin, dass die vulkanische Aktivität im westlichen Teil der Caldera abnimmt. Die nordöstliche Region zeigt dagegen verstärkte Wechselwirkungen zwischen aufsteigendem Basaltmagma und dem gespeicherten rhyolithischen Magma. Diese Wechselwirkungen könnten das Gebiet für zukünftige Ausbrüche anfällig machen. Dennoch weisen die Forscher darauf hin, dass die aktuellen Magmenreservoire einen vergleichsweise niedrigen Schmelzanteil von 6–28 Prozent aufweisen. Das deutet darauf hin, dass die Reservoirs aktuell nicht ausbruchsgefährdet sind. Damit ein Magma eruptieren kann, braucht es einen Schmelzanteil von mindestens 35 Prozent.

Die Forschungsergebnisse liefern wichtige Hinweise darauf, wie sich die magmatische Aktivität unter der Yellowstone-Caldera entwickelt. Sie betonen auch die Notwendigkeit weiterer Untersuchungen, um die Dynamik des Magmareservoirs besser zu verstehen und das potenzielle Risiko zukünftiger Ausbrüche präziser einschätzen zu können.